
Kimberly M Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5974509/publications.pdf Version: 2024-02-01

KIMBEDLY M HIIBED

#	Article	IF	CITATIONS
1	The mGluR theory of fragile X mental retardation. Trends in Neurosciences, 2004, 27, 370-377.	4.2	1,431
2	Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7746-7750.	3.3	1,208
3	Group 1 mGluR-Dependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease. Neuron, 2010, 65, 445-459.	3.8	529
4	Internalization of ionotropic glutamate receptors in response to mGluR activation. Nature Neuroscience, 2001, 4, 1079-1085.	7.1	492
5	Imbalance of Neocortical Excitation and Inhibition and Altered UP States Reflect Network Hyperexcitability in the Mouse Model of Fragile X Syndrome. Journal of Neurophysiology, 2008, 100, 2615-2626.	0.9	453
6	Rapid Translation of Arc/Arg3.1 Selectively Mediates mGluR-Dependent LTD through Persistent Increases in AMPAR Endocytosis Rate. Neuron, 2008, 59, 84-97.	3.8	419
7	Chemical Induction of mGluR5- and Protein Synthesis–Dependent Long-Term Depression in Hippocampal Area CA1. Journal of Neurophysiology, 2001, 86, 321-325.	0.9	342
8	Metabotropic Receptor-Dependent Long-Term Depression Persists in the Absence of Protein Synthesis in the Mouse Model of Fragile X Syndrome. Journal of Neurophysiology, 2006, 95, 3291-3295.	0.9	242
9	Multiple Autism-Linked Genes Mediate Synapse Elimination via Proteasomal Degradation of a Synaptic Scaffold PSD-95. Cell, 2012, 151, 1581-1594.	13.5	235
10	Extracellular Signal-Regulated Protein Kinase Activation Is Required for Metabotropic Glutamate Receptor-Dependent Long-Term Depression in Hippocampal Area CA1. Journal of Neuroscience, 2004, 24, 4859-4864.	1.7	228
11	Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nature Neuroscience, 2012, 15, 431-440.	7.1	225
12	Homer Interactions Are Necessary for Metabotropic Glutamate Receptor-Induced Long-Term Depression and Translational Activation. Journal of Neuroscience, 2008, 28, 543-547.	1.7	224
13	PLC-β 1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature Neuroscience, 2001, 4, 282-288.	7.1	210
14	The State of Synapses in Fragile X Syndrome. Neuroscientist, 2009, 15, 549-567.	2.6	182
15	Protein translation in synaptic plasticity: mGluR-LTD, Fragile X. Current Opinion in Neurobiology, 2009, 19, 319-326.	2.0	166
16	Fragile X Mental Retardation Protein Induces Synapse Loss through Acute Postsynaptic Translational Regulation. Journal of Neuroscience, 2007, 27, 3120-3130.	1.7	156
17	Altered Neocortical Rhythmic Activity States in <i>Fmr1</i> KO Mice Are Due to Enhanced mGluR5 Signaling and Involve Changes in Excitatory Circuitry. Journal of Neuroscience, 2011, 31, 14223-14234.	1.7	155
18	Developmental Switch in Synaptic Mechanisms of Hippocampal Metabotropic Glutamate Receptor-Dependent Long-Term Depression. Journal of Neuroscience, 2005, 25, 2992-3001.	1.7	153

KIMBERLY M HUBER

#	Article	IF	CITATIONS
19	Dysregulation of Mammalian Target of Rapamycin Signaling in Mouse Models of Autism. Journal of Neuroscience, 2015, 35, 13836-13842.	1.7	153
20	Multiple Gq-Coupled Receptors Converge on a Common Protein Synthesis-Dependent Long-Term Depression That Is Affected in Fragile X Syndrome Mental Retardation. Journal of Neuroscience, 2007, 27, 11624-11634.	1.7	149
21	MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. ELife, 2016, 5, .	2.8	138
22	Evidence for a Fragile X Mental Retardation Protein-Mediated Translational Switch in Metabotropic Glutamate Receptor-Triggered Arc Translation and Long-Term Depression. Journal of Neuroscience, 2012, 32, 5924-5936.	1.7	136
23	Fragile X Mental Retardation Protein Is Required for Synapse Elimination by the Activity-Dependent Transcription Factor MEF2. Neuron, 2010, 66, 191-197.	3.8	135
24	A Mouse Model of the Human Fragile X Syndrome I304N Mutation. PLoS Genetics, 2009, 5, e1000758.	1.5	113
25	Increased Expression of the PI3K Enhancer PIKE Mediates Deficits in Synaptic Plasticity and Behavior in Fragile X Syndrome. Cell Reports, 2015, 11, 727-736.	2.9	97
26	Experience-Induced Arc/Arg3.1 Primes CA1 Pyramidal Neurons for Metabotropic Glutamate Receptor-Dependent Long-Term Synaptic Depression. Neuron, 2013, 80, 72-79.	3.8	91
27	Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neuroscience and Biobehavioral Reviews, 2014, 46, 228-241.	2.9	87
28	Selective Role of the Catalytic PI3K Subunit p110β in Impaired Higher Order Cognition in Fragile X Syndrome. Cell Reports, 2015, 11, 681-688.	2.9	72
29	A Target Cell-Specific Role for Presynaptic <i>Fmr1</i> in Regulating Glutamate Release onto Neocortical Fast-Spiking Inhibitory Neurons. Journal of Neuroscience, 2013, 33, 2593-2604.	1.7	69
30	Increased Metabotropic Glutamate Receptor 5 Signaling Underlies Obsessive-Compulsive Disorder-like Behavioral and Striatal Circuit Abnormalities in Mice. Biological Psychiatry, 2016, 80, 522-533.	0.7	63
31	FMRP Control of Ribosome Translocation Promotes Chromatin Modifications and Alternative Splicing of Neuronal Genes Linked to Autism. Cell Reports, 2020, 30, 4459-4472.e6.	2.9	63
32	A Role for Dendritic mGluR5-Mediated Local Translation of Arc/Arg3.1 in MEF2-Dependent Synapse Elimination. Cell Reports, 2014, 7, 1589-1600.	2.9	58
33	Postsynaptic FMRP Promotes the Pruning of Cell-to-Cell Connections among Pyramidal Neurons in the L5A Neocortical Network. Journal of Neuroscience, 2014, 34, 3413-3418.	1.7	56
34	Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice. Journal of Neuroscience, 2016, 36, 2131-2147.	1.7	54
35	Elevated CaMKIIα and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell Reports, 2015, 13, 2297-2311.	2.9	51
36	Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Seminars in Cell and Developmental Biology, 2018, 77, 51-62.	2.3	46

KIMBERLY M HUBER

#	Article	IF	CITATIONS
37	Selective inhibition of glycogen synthase kinase $3\hat{l}\pm$ corrects pathophysiology in a mouse model of fragile X syndrome. Science Translational Medicine, 2020, 12, .	5.8	42
38	Enhancement of dynamin polymerization and GTPase activity by Arc/Arg3.1. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1310-1318.	1.1	40
39	Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling. Molecular and Cellular Biology, 2016, 36, 70-83.	1.1	40
40	The fragile X–cerebellum connection. Trends in Neurosciences, 2006, 29, 183-185.	4.2	39
41	Local cortical circuit correlates of altered EEG in the mouse model of Fragile X syndrome. Neurobiology of Disease, 2019, 124, 563-572.	2.1	39
42	Audiogenic Seizures in the <i>Fmr1</i> Knock-Out Mouse Are Induced by <i>Fmr1</i> Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. Journal of Neuroscience, 2019, 39, 9852-9863.	1.7	38
43	Palmitoylation and Membrane Binding of Arc/Arg3.1: A Potential Role in Synaptic Depression. Biochemistry, 2018, 57, 520-524.	1.2	37
44	Experience-Dependent and Differential Regulation of Local and Long-Range Excitatory Neocortical Circuits by Postsynaptic Mef2c. Neuron, 2017, 93, 48-56.	3.8	32
45	Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. Journal of Neurodevelopmental Disorders, 2017, 9, 6.	1.5	32
46	Induction of NMDA Receptor-Dependent Long-Term Depression in Visual Cortex Does Not Require Metabotropic Glutamate Receptors. Journal of Neurophysiology, 1999, 82, 3594-3597.	0.9	31
47	Postsynaptic FMRP bidirectionally regulates excitatory synapses as a function of developmental age and MEF2 activity. Molecular and Cellular Neurosciences, 2013, 56, 39-49.	1.0	27
48	APP Causes Hyperexcitability in Fragile X Mice. Frontiers in Molecular Neuroscience, 2016, 9, 147.	1.4	24
49	FMRP-dependent Mdm2 dephosphorylation is required for MEF2-induced synapse elimination. Human Molecular Genetics, 2017, 26, ddw386.	1.4	23
50	Optimization of ribosome profiling using low-input brain tissue from fragile X syndrome model mice. Nucleic Acids Research, 2019, 47, e25-e25.	6.5	16
51	Distinct stages of synapse elimination are induced by burst firing of CA1 neurons and differentially require MEF2A/D. ELife, 2017, 6, .	2.8	16
52	Fragile X Syndrome: Molecular Mechanisms of Cognitive Dysfunction. American Journal of Psychiatry, 2007, 164, 556-556.	4.0	12
53	Ribosome profiling in mouse hippocampus: plasticity-induced regulation and bidirectional control by TSC2 and FMRP. Molecular Autism, 2020, 11, 78.	2.6	10
54	Functional coordination of BET family proteins underlies altered transcription associated with memory impairment in fragile X syndrome. Science Advances, 2021, 7, .	4.7	7

KIMBERLY M HUBER

#	Article	IF	CITATIONS
55	Postsynaptic mGluR5 promotes evoked AMPAR-mediated synaptic transmission onto neocortical layer 2/3 pyramidal neurons during development. Journal of Neurophysiology, 2015, 113, 786-795.	0.9	6
56	Synaptic homeostasis: quality vs. quantity. Nature Neuroscience, 2018, 21, 774-776.	7.1	6
57	GABAA Alpha 2,3 Modulation Improves Select Phenotypes in a Mouse Model of Fragile X Syndrome. Frontiers in Psychiatry, 2021, 12, 678090.	1.3	6
58	Protocadherins and the Social Brain. Biological Psychiatry, 2017, 81, 173-174.	0.7	5
59	Experience-dependent weakening of callosal synaptic connections in the absence of postsynaptic FMRP. ELife, 2021, 10, .	2.8	5
60	A sound-driven cortical phase-locking change in the Fmr1 KO mouse requires Fmr1 deletion in a subpopulation of brainstem neurons. Neurobiology of Disease, 2022, 170, 105767.	2.1	4
61	Editorial: Latest Advances on Excitatory Synapse Biology. Frontiers in Synaptic Neuroscience, 2021, 13, 768651.	1.3	1