Kjetil VÃ¥ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5974409/publications.pdf Version: 2024-02-01

KIETH VÄYCE

#	Article	IF	CITATIONS
1	Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geoscience, 2011, 4, 322-327.	12.9	225
2	Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nature Geoscience, 2009, 2, 67-72.	12.9	160
3	The Irminger Gyre: Circulation, convection, and interannual variability. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 590-614.	1.4	113
4	Significant role of the North Icelandic Jet in the formation of Denmark Strait overflow water. Nature Geoscience, 2011, 4, 723-727.	12.9	99
5	Revised circulation scheme north of the Denmark Strait. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 79, 20-39.	1.4	98
6	Winter Mixed Layer Development in the Central Irminger Sea: The Effect of Strong, Intermittent Wind Events. Journal of Physical Oceanography, 2008, 38, 541-565.	1.7	85
7	Evolution of the <scp>E</scp> ast <scp>G</scp> reenland <scp>C</scp> urrent from <scp>F</scp> ram <scp>S</scp> trait to <scp>D</scp> enmark <scp>S</scp> trait: Synoptic measurements from summer 2012. Journal of Geophysical Research: Oceans, 2017, 122, 1974-1994.	2.6	79
8	Convective mixing in the central Irminger Sea: 2002–2010. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 63, 36-51.	1.4	73
9	Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nature Climate Change, 2021, 11, 21-26.	18.8	70
10	Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior. Nature Communications, 2016, 7, 13244.	12.8	69
11	Upstream sources of the Denmark Strait Overflow: Observations from a high-resolution mooring array. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 112, 94-112.	1.4	66
12	Decreasing intensity of open-ocean convection in the Greenland and Iceland seas. Nature Climate Change, 2015, 5, 877-882.	18.8	63
13	The Atlantic <scp>W</scp> ater boundary current in the <scp>N</scp> ansen <scp>B</scp> asin: Transport and mechanisms of lateral exchange. Journal of Geophysical Research: Oceans, 2016, 121, 6946-6960.	2.6	57
14	Water Mass Transformation in the Greenland Sea during the Period 1986–2016. Journal of Physical Oceanography, 2019, 49, 121-140.	1.7	57
15	The <scp>A</scp> tlantic <scp>W</scp> ater boundary current north of <scp>S</scp> valbard in late summer. Journal of Geophysical Research: Oceans, 2017, 122, 2269-2290.	2.6	52
16	Atlantic origin of observed and modelled freshwater anomalies in the Nordic Seas. Nature Geoscience, 2014, 7, 801-805.	12.9	49
17	On the hydrography of <scp>D</scp> enmark <scp>S</scp> trait. Journal of Geophysical Research: Oceans, 2017, 122, 306-321.	2.6	48
18	Ocean convection linked to the recent ice edge retreat along east Greenland. Nature Communications, 2018, 9, 1287.	12.8	48

Kjetil VÃ¥ge

#	Article	IF	CITATIONS
19	Water mass transformation in the Iceland Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 101, 98-109.	1.4	47
20	Multiâ€event analysis of the westerly Greenland tip jet based upon 45 winters in ERAâ€40. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1999-2011.	2.7	43
21	An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in <scp>ERA5</scp> reanalysis: The impact of sea ice distribution. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 691-712.	2.7	43
22	Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century. Reviews of Geophysics, 2022, 60, .	23.0	43
23	Composition and variability of the <scp>D</scp> enmark <scp>S</scp> trait <scp>O</scp> verflow <scp>W</scp> ater in a highâ€resolution numerical model hindcast simulation. Journal of Geophysical Research: Oceans, 2017, 122, 2830-2846.	2.6	32
24	Continued warming, salinification and oxygenation of the Greenland Sea gyre. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 70, 1476434.	1.7	29
25	Liquid freshwater transport estimates from the <scp>E</scp> ast <scp>G</scp> reenland <scp>C</scp> urrent based on continuous measurements north of <scp>D</scp> enmark <scp>S</scp> trait. Journal of Geophysical Research: Oceans, 2017, 122, 93-109.	2.6	27
26	Characteristics and Transformation of Pacific Winter Water on the Chukchi Sea Shelf in Late Spring. Journal of Geophysical Research: Oceans, 2019, 124, 7153-7177.	2.6	25
27	The Emergence of the North Icelandic Jet and Its Evolution from Northeast Iceland to Denmark Strait. Journal of Physical Oceanography, 2019, 49, 2499-2521.	1.7	24
28	Structure and Variability of the Shelfbreak East Greenland Current North of Denmark Strait. Journal of Physical Oceanography, 2017, 47, 2631-2646.	1.7	23
29	The North Icelandic Jet and its relationship to the North Icelandic Irminger Current. Journal of Marine Research, 2017, 75, 605-639.	0.3	22
30	The Iceland Greenland Seas Project. Bulletin of the American Meteorological Society, 2019, 100, 1795-1817.	3.3	21
31	Sea-ice retreat suggests re-organization of water mass transformation in the Nordic and Barents Seas. Nature Communications, 2022, 13, 67.	12.8	19
32	Impact of model resolution on the representation of the air–sea interaction associated with the North Water Polynya. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1474-1489.	2.7	17
33	What causes the location of the airâ€sea turbulent heat flux maximum over the Labrador Sea?. Geophysical Research Letters, 2014, 41, 3628-3635.	4.0	16
34	The Iceland-Faroe Slope Jet: a conduit for dense water toward the Faroe Bank Channel overflow. Nature Communications, 2020, 11, 5390.	12.8	16
35	Fate of Warm Pacific Water in the Arctic Basin. Geophysical Research Letters, 2021, 48, e2021GL094693.	4.0	16
36	Alongâ€Stream, Seasonal, and Interannual Variability of the North Icelandic Irminger Current and East Icelandic Current Around Iceland. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016283.	2.6	13

KJETIL VÃ¥GE

#	Article	IF	CITATIONS
37	Detecting Labrador Sea Water formation from space. Journal of Geophysical Research: Oceans, 2013, 118, 2074-2086.	2.6	11
38	Greenland Melt and the Atlantic Meridional Overturning Circulation. , 2016, 29, 22-33.		11
39	Windâ€Driven Coastal Upwelling and Downwelling in the Shelfbreak East Greenland Current. Journal of Geophysical Research: Oceans, 2018, 123, 6106-6115.	2.6	10
40	Convection in the Western North Atlantic Sub-Polar Gyre: Do Small-Scale Wind Events Matter?. , 2008, , 629-652.		10
41	Atlantic-Origin Overflow Water in the East Greenland Current. Journal of Physical Oceanography, 2019, 49, 2255-2269.	1.7	9
42	Attuning to a changing ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20363-20371.	7.1	9
43	A Numerical Study of Interannual Variability in the North Icelandic Irminger Current. Journal of Geophysical Research: Oceans, 2018, 123, 8994-9009.	2.6	8
44	Evolution and Transformation of the North Icelandic Irminger Current Along the North Iceland Shelf. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	5
45	Water mass transformation in the Iceland Sea: Contrasting two winters separated by four decades. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 186, 103824.	1.4	4
46	A revised ocean glider concept to realize Stommel's vision and supplement Argo floats. Ocean Science, 2020, 16, 291-305.	3.4	3
47	How Warm Gulf Stream Water Sustains a Cold Underwater Waterfall. Frontiers for Young Minds, 0,	0.8	0