William F Elmquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5974168/publications.pdf

Version: 2024-02-01

115 7,748 49 85
papers citations h-index g-index

118 118 118 8506
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Preclinical modeling in glioblastoma patient-derived xenograft (GBM PDX) xenografts to guide clinical development of lisavanbulin—a novel tumor checkpoint controller targeting microtubules. Neuro-Oncology, 2022, 24, 384-395.	1.2	7
2	Central Nervous System Distribution of an Opioid Agonist Combination with Synergistic Activity. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 34-46.	2.5	2
3	The influence of the blood–brain barrier in the treatment of brain tumours. Journal of Internal Medicine, 2022, 292, 3-30.	6.0	23
4	Brain barriers virtual: an interim solution or future opportunity?. Fluids and Barriers of the CNS, 2022, 19, 19.	5.0	0
5	To Measure is to Know: A Perspective on the Work of Dr. Margareta Hammarlund-Udenaes. Pharmaceutical Research, 2022, , 1.	3.5	1
6	Central Nervous System Delivery of the Catalytic Subunit of DNA-Dependent Protein Kinase Inhibitor Peposertib as Radiosensitizer for Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2022, 381, 217-228.	2.5	7
7	Factors Influencing Luciferase-Based Bioluminescent Imaging in Preclinical Models of Brain Tumor. Drug Metabolism and Disposition, 2022, 50, 277-286.	3.3	6
8	Activation of STAT3 through combined SRC and EGFR signaling drives resistance to a mitotic kinesin inhibitor in glioblastoma. Cell Reports, 2022, 39, 110991.	6.4	5
9	Abstract 2598: AZD1390 radio-sensitizes p53-mutant GBM via disrupting homology directed DNA repair. Cancer Research, 2022, 82, 2598-2598.	0.9	0
10	<i>In Vivo</i> Efficacy of Tesevatinib in <i>EGFR</i> -Amplified Patient-Derived Xenograft Glioblastoma Models May Be Limited by Tissue Binding and Compensatory Signaling. Molecular Cancer Therapeutics, 2021, 20, 1009-1018.	4.1	11
11	Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro-Oncology, 2021, 23, 2042-2053.	1.2	37
12	Efflux Limits Tumor Drug Delivery Despite Disrupted BBB. Trends in Pharmacological Sciences, 2021, 42, 426-428.	8.7	9
13	Lisdexamfetamine Pharmacokinetic Comparison Between Patients Who Underwent Roux-en-Y Gastric Bypass and Nonsurgical Controls. Obesity Surgery, 2021, 31, 4289-4294.	2.1	2
14	Preclinical Risk Evaluation of Normal Tissue Injury With Novel Radiosensitizers. International Journal of Radiation Oncology Biology Physics, 2021, 111, e54-e62.	0.8	7
15	Changes in the vasculature of human brain tumors: Implications for treatment. Neuro-Oncology, 2021, 23, 1995-1997.	1.2	2
16	Brain Distribution of Berzosertib: An Ataxia Telangiectasia and Rad3-Related Protein Inhibitor for the Treatment of Glioblastoma. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 343-357.	2.5	7
17	Methods for intratumoral microdialysis probe targeting and validation in murine brain tumor models. Journal of Neuroscience Methods, 2021, 363, 109321.	2.5	3
18	Influence of transporters in treating cancers in the CNS. , 2020, , 277-301.		2

#	Article	IF	CITATIONS
19	Addressing BBB Heterogeneity: A New Paradigm for Drug Delivery to Brain Tumors. Pharmaceutics, 2020, 12, 1205.	4.5	31
20	Enhancing Brain Retention of a KIF11 Inhibitor Significantly Improves its Efficacy in a Mouse Model of Glioblastoma. Scientific Reports, 2020, 10, 6524.	3.3	20
21	Comments on: "Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity― Neuro-Oncology, 2020, 22, 1404-1405.	1.2	0
22	Baseline requirements for novel agents being considered for phase II/III brain cancer efficacy trials: conclusions from the Adult Brain Tumor Consortium's first workshop on CNS drug delivery. Neuro-Oncology, 2020, 22, 1422-1424.	1.2	22
23	Localized Metabolomic Gradients in Patient-Derived Xenograft Models of Glioblastoma. Cancer Research, 2020, 80, 1258-1267.	0.9	67
24	Brain Distributional Kinetics of a Novel MDM2 Inhibitor SAR405838: Implications for Use in Brain Tumor Therapy. Drug Metabolism and Disposition, 2019, 47, 1403-1414.	3.3	13
25	Brain Distribution of a Panel of Epidermal Growth Factor Receptor Inhibitors Using Cassette Dosing in Wild-Type and <i>Abcb1/Abcg2</i> -Deficient Mice. Drug Metabolism and Disposition, 2019, 47, 393-404.	3.3	38
26	Brain Distribution and Active Efflux of Three panRAF Inhibitors: Considerations in the Treatment of Melanoma Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 446-461.	2.5	15
27	E6201, an intravenous MEK1 inhibitor, achieves an exceptional response in BRAF V600E-mutated metastatic malignant melanoma with brain metastases. Investigational New Drugs, 2019, 37, 636-645.	2.6	22
28	Brain Distribution of a Novel MEK Inhibitor E6201: Implications in the Treatment of Melanoma Brain Metastases. Drug Metabolism and Disposition, 2018, 46, 658-666.	3.3	24
29	Pharmacokinetic Assessment of Cooperative Efflux of the Multitargeted Kinase Inhibitor Ponatinib Across the Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 249-261.	2.5	30
30	Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-Oncology, 2018, 20, 184-191.	1.2	443
31	Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nature Communications, 2018, 9, 4904.	12.8	62
32	Efficacy of the MDM2 Inhibitor SAR405838 in Glioblastoma Is Limited by Poor Distribution Across the Blood–Brain Barrier. Molecular Cancer Therapeutics, 2018, 17, 1893-1901.	4.1	37
33	Barriers to Effective Drug Treatment for Brain Metastases: A Multifactorial Problem in the Delivery of Precision Medicine. Pharmaceutical Research, 2018, 35, 177.	3.5	53
34	Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities?. Pharmacological Research, 2017, 123, 10-25.	7.1	31
35	Heterogeneous Binding and Central Nervous System Distribution of the Multitargeted Kinase Inhibitor Ponatinib Restrict Orthotopic Efficacy in a Patient-Derived Xenograft Model of Glioblastoma. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 136-147.	2.5	25
36	Restricted Delivery of Talazoparib Across the Blood–Brain Barrier Limits the Sensitizing Effects of PARP Inhibition on Temozolomide Therapy in Glioblastoma. Molecular Cancer Therapeutics, 2017, 16, 2735-2746.	4.1	58

#	Article	IF	CITATIONS
37	Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-Oncology, 2017, 19, 128-137.	1.2	170
38	Challenges in the Delivery of Therapies to Melanoma Brain Metastases. Current Pharmacology Reports, 2016, 2, 309-325.	3.0	18
39	ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B–Driven Brainstem Glioma Model. Molecular Cancer Therapeutics, 2016, 15, 819-829.	4.1	49
40	Factors Influencing the Central Nervous System Distribution of a Novel Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GSK2126458: Implications for Overcoming Resistance with Combination Therapy for Melanoma Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 251-259.	2.5	18
41	Strategies to improve delivery of anticancer drugs across the blood–brain barrier to treat glioblastoma. Neuro-Oncology, 2016, 18, 27-36.	1.2	210
42	Impact of BRAF mutation and BRAF inhibition on melanoma brain metastases. Melanoma Research, 2015, 25, 75-79.	1.2	27
43	Improving drug delivery to primary and metastatic brain tumors: Strategies to overcome the blood–brain barrier. Clinical Pharmacology and Therapeutics, 2015, 97, 336-346.	4.7	104
44	Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro-Oncology, 2015, 17, 1210-9.	1.2	26
45	The Efficacy of the Wee1 Inhibitor MK-1775 Combined with Temozolomide Is Limited by Heterogeneous Distribution across the Blood–Brain Barrier in Glioblastoma. Clinical Cancer Research, 2015, 21, 1916-1924.	7.0	86
46	Unsanctifying the sanctuary: challenges and opportunities with brain metastases. Neuro-Oncology, 2015, 17, 639-651.	1.2	62
47	Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System. Molecular Cancer Therapeutics, 2015, 14, 2735-2743.	4.1	75
48	Efflux Transporters at the Blood-Brain Barrier Limit Delivery and Efficacy of Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib (PD-0332991) in an Orthotopic Brain Tumor Model. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 264-271.	2.5	84
49	Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma. PLoS ONE, 2015, 10, e0141506.	2.5	104
50	Factors Influencing the CNS Distribution of a Novel MEK-1/2 Inhibitor: Implications for Combination Therapy for Melanoma Brain Metastases. Drug Metabolism and Disposition, 2014, 42, 1292-1300.	3.3	89
51	Bayesian Approach to Estimate AUC, Partition Coefficient and Drug Targeting Index for Studies with Serial Sacrifice Design. Pharmaceutical Research, 2014, 31, 649-659.	3.5	5
52	Sunitinib LC–MS/MS Assay in Mouse Plasma and Brain Tissue: Application in CNS Distribution Studies. Chromatographia, 2013, 76, 1657-1665.	1.3	28
53	Function of the Blood-Brain Barrier and Restriction of Drug Delivery to Invasive Glioma Cells: Findings in an Orthotopic Rat Xenograft Model of Glioma. Drug Metabolism and Disposition, 2013, 41, 33-39.	3.3	139
54	Brain Metastases from Renal Cell Carcinoma in the Era of Tyrosine Kinase Inhibitors. Clinical Genitourinary Cancer, 2013, 11, 155-160.	1.9	42

#	Article	IF	Citations
55	Saturable Active Efflux by P-Glycoprotein and Breast Cancer Resistance Protein at the Blood-Brain Barrier Leads to Nonlinear Distribution of Elacridar to the Central Nervous System. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 111-124.	2.5	35
56	Brain Efflux Index To Investigate the Influence of Active Efflux on Brain Distribution of Pemetrexed and Methotrexate. Drug Metabolism and Disposition, 2013, 41, 659-667.	3.3	34
57	Pharmacokinetic Assessment of Efflux Transport in Sunitinib Distribution to the Brain. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 755-764.	2.5	66
58	Mechanisms Limiting Distribution of the Threonine-Protein Kinase B-RaF ^{V600E} Inhibitor Dabrafenib to the Brain: Implications for the Treatment of Melanoma Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 655-664.	2.5	158
59	Development and Evaluation of a Novel Microemulsion Formulation of Elacridar to Improve its Bioavailability. Journal of Pharmaceutical Sciences, 2013, 102, 1343-1354.	3.3	40
60	Brain Distribution and Bioavailability of Elacridar after Different Routes of Administration in the Mouse. Drug Metabolism and Disposition, 2012, 40, 1612-1619.	3.3	51
61	Brain Distribution of Cediranib Is Limited by Active Efflux at the Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 386-395.	2.5	37
62	Active Efflux of Dasatinib from the Brain Limits Efficacy against Murine Glioblastoma: Broad Implications for the Clinical Use of Molecularly Targeted Agents. Molecular Cancer Therapeutics, 2012, 11, 2183-2192.	4.1	85
63	Impact of P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) on the Brain Distribution of a Novel BRAF Inhibitor: Vemurafenib (PLX4032). Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 33-40.	2.5	151
64	Quantitative Proteomics of Transporter Expression in Brain Capillary Endothelial Cells Isolated from P-Glycoprotein (P-gp), Breast Cancer Resistance Protein (Bcrp), and P-gp/Bcrp Knockout Mice. Drug Metabolism and Disposition, 2012, 40, 1164-1169.	3.3	112
65	Insight into the Cooperation of P-glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) at the Blood–Brain Barrier: A Case Study Examining Sorafenib Efflux Clearance. Molecular Pharmaceutics, 2012, 9, 678-684.	4.6	65
66	Cardiac Responses to the Intrapericardial Delivery of Metoprolol: Targeted Delivery Compared to Intravenous Administration. Journal of Cardiovascular Translational Research, 2012, 5, 535-540.	2.4	9
67	OCT2 and MATE1 Provide Bidirectional Agmatine Transport. Molecular Pharmaceutics, 2011, 8, 133-142.	4.6	54
68	The Role of the Breast Cancer Resistance Protein (<i>ABCG2</i>) in the Distribution of Sorafenib to the Brain. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 223-233.	2.5	151
69	Determination of cediranib in mouse plasma and brain tissue using high-performance liquid chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3812-3817.	2.3	14
70	pH-Dependent Transport of Pemetrexed by Breast Cancer Resistance Protein. Drug Metabolism and Disposition, 2011, 39, 1478-1485.	3.3	28
71	Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Reviews in Molecular Medicine, 2011, 13, e17.	3.9	266
72	Breast Cancer Resistance Protein and P-Glycoprotein in Brain Cancer: Two Gatekeepers Team Up. Current Pharmaceutical Design, 2011, 17, 2793-2802.	1.9	216

#	Article	IF	CITATIONS
73	Utilizing transmembrane convection to enhance solute sampling and delivery by microdialysis: Theory and in vitro validation. Journal of Membrane Science, 2010, 348, 131-149.	8.2	15
74	Distribution of Gefitinib to the Brain Is Limited by P-glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2)-Mediated Active Efflux. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 147-155.	2.5	221
75	Organic Cation Uptake Is Enhanced in bcrp1-Transfected MDCKII Cells. Molecular Pharmaceutics, 2010, 7, 138-145.	4.6	7
76	Substrate-Dependent Breast Cancer Resistance Protein (Bcrp1/Abcg2)-Mediated Interactions: Consideration of Multiple Binding Sites in in Vitro Assay Design. Drug Metabolism and Disposition, 2009, 37, 560-570.	3.3	69
77	P-glycoprotein and Breast Cancer Resistance Protein Influence Brain Distribution of Dasatinib. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 956-963.	2.5	181
78	Investigation of the micellar effect of pluronic P85 on P-glycoprotein inhibition: Cell accumulation and equilibrium dialysis studies. Journal of Pharmaceutical Sciences, 2009, 98, 4170-4190.	3.3	26
79	Interactions of pluronic block copolymers on Pâ€gp efflux activity: Experience with HIVâ€1 protease inhibitors. Journal of Pharmaceutical Sciences, 2008, 97, 5421-5433.	3.3	51
80	Investigation of the Role of Breast Cancer Resistance Protein (Bcrp/ <i>Abcg2</i>) on Pharmacokinetics and Central Nervous System Penetration of Abacavir and Zidovudine in the Mouse. Drug Metabolism and Disposition, 2008, 36, 1476-1484.	3.3	67
81	P-glycoprotein-Mediated Active Efflux of the Anti-HIV1 Nucleoside Abacavir Limits Cellular Accumulation and Brain Distribution. Drug Metabolism and Disposition, 2007, 35, 2076-2085.	3.3	83
82	Mitoxantrone Permeability in MDCKII Cells Is Influenced by Active Influx Transport. Molecular Pharmaceutics, 2007, 4, 475-483.	4.6	16
83	AAPS-FDA workshop white paper: Microdialysis principles, application, and regulatory perspectives report from the Joint AAPS-FDA Workshop, November 4–5, 2005, Nashville, TN. AAPS Journal, 2007, 9, E48-E59.	4.4	16
84	Abcg2/Bcrp1 Mediates the Polarized Transport of Antiretroviral Nucleosides Abacavir and Zidovudine. Drug Metabolism and Disposition, 2007, 35, 1165-1173.	3.3	84
85	Novel Delivery System Enhances Efficacy of Antiretroviral Therapy in Animal Model for HIV-1 Encephalitis. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1033-1042.	4.3	67
86	Characterization of an in vitro cell culture bioreactor system to evaluate anti-neoplastic drug regimens. Breast Cancer Research and Treatment, 2006, 96, 217-225.	2. 5	14
87	Development of a Respirable, Sustained Release Microcarrier for 5-Fluorouracil II: In Vitro and In Vivo Optimization of Lipid Coated Nanoparticles. Journal of Pharmaceutical Sciences, 2006, 95, 1127-1143.	3.3	38
88	Development of a Respirable, Sustained Release Microcarrier for 5-Fluorouracil I: In Vitro Assessment of Liposomes, Microspheres, and Lipid Coated Nanoparticles. Journal of Pharmaceutical Sciences, 2006, 95, 1114-1126.	3.3	87
89	Measurement of drug release from microcarriers by microdialysis. Journal of Pharmaceutical Sciences, 2005, 94, 1456-1466.	3.3	29
90	Quantitative Assessment of HIV-1 Protease Inhibitor Interactions with Drug Efflux Transporters in the Blood–Brain Barrier. Pharmaceutical Research, 2005, 22, 1259-1268.	3. 5	66

#	Article	IF	Citations
91	Distribution of the Novel Antifolate Pemetrexed to the Brain. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 222-229.	2.5	43
92	Plasma Membrane Localization of Multidrug Resistance-Associated Protein Homologs in Brain Capillary Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 449-455.	2.5	168
93	Distribution kinetics of a micelle-forming block copolymer Pluronic P85. Journal of Controlled Release, 2004, 100, 389-397.	9.9	113
94	Sensitization of cells overexpressing multidrug-resistant proteins by pluronic P85. Pharmaceutical Research, 2003, 20, 1581-1590.	3.5	115
95	Drug efflux transporters in the CNS. Advanced Drug Delivery Reviews, 2003, 55, 83-105.	13.7	273
96	Separation methods that are capable of revealing blood–brain barrier permeability. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 797, 241-254.	2.3	28
97	Distribution of STI-571 to the Brain Is Limited by P-Glycoprotein-Mediated Efflux. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1085-1092.	2.5	248
98	Transport of Fluorescein in MDCKII-MRP1 Transfected Cells and mrp1-Knockout Mice. Biochemical and Biophysical Research Communications, 2001, 284, 863-869.	2.1	70
99	The use of transgenic mice in pharmacokinetic and pharmacodynamic studies. Journal of Pharmaceutical Sciences, 2001, 90, 422-435.	3.3	10
100	Effect of probenecid on fluorescein transport in the central nervous system using in vitro and in vivo models. Pharmaceutical Research, 2001, 18, 1542-1549.	3.5	48
101	Microdialysis in the study of drug transporters in the CNS. Advanced Drug Delivery Reviews, 2000, 45, 295-307.	13.7	54
102	Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Research, 2000, 876, 148-153.	2.2	228
103	Cyclosporin a has low potency as a calcineurin inhibitor in cells expressing high levels of P-glycoprotein. Life Sciences, 1998, 62, 2441-2448.	4.3	10
104	Expression of Multidrug Resistance-Associated Protein (MRP) in Brain Microvessel Endothelial Cells. Biochemical and Biophysical Research Communications, 1998, 243, 816-820.	2.1	186
105	Pharmacological characterization of LY335979: A potent cyclopropyldibenzosuberane modulator of P-glycoprotein. Advances in Enzyme Regulation, 1997, 37, 335-347.	2.6	77
106	Application of microdialysis in pharmacokinetic studies. Pharmaceutical Research, 1997, 14, 267-288.	3.5	274
107	The design and validation of a novel intravenous microdialysis probe: application to fluconazole pharmacokinetics in the freely-moving rat model. Pharmaceutical Research, 1997, 14, 1455-1460.	3.5	22
108	Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. Life Sciences, 1996, 59, 1521-1531.	4.3	121

#	Article	IF	CITATIONS
109	The binding of cyclosporin A to human plasma: an in vitro microdialysis study. Pharmaceutical Research, 1996, 13, 622-627.	3.5	35
110	Comparison of the transport characteristics of D- and L-methionine in a human intestinal epithelial model (Caco-2) and in a perfused rat intestinal model. Pharmaceutical Research, 1994, 11, 1771-1776.	3.5	24
111	Transsynovial drug distribution: synovial mean transit time of diclofenac and other nonsteroidal antiinflammatory drugs. Pharmaceutical Research, 1994, 11, 1689-1697.	3.5	29
112	The relationship between urine and plasma concentrations of carbamazepine: implications for therapeutic drug monitoring. Pharmaceutical Research, 1991, 08, 282-284.	3.5	5
113	Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharmaceutical Research, 1990, 07, 411-417.	3.5	67
114	Liquid chromatographic analysis of di(2-ethylhexyl) phthalate: application to pharmacokinetic studies in the mongrel dog. Pharmaceutical Research, 1988, 05, 10-15.	3.5	2
115	Pharmacokinetics of Propylene Glycol in Humans During Multiple Dosing Regimens. Journal of Pharmaceutical Sciences, 1985, 74, 876-879.	3.3	45