List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/597391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206, 107-117.	7.3	805
3	Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Annals of Botany, 2007, 99, 967-985.	2.9	453
4	Impacts of the coronavirus pandemic on biodiversity conservation. Biological Conservation, 2020, 246, 108571.	4.1	264
5	Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology, 2009, 90, 598-611.	3.2	243
6	Assessing species and community functional responses to environmental gradients: which multivariate methods?. Journal of Vegetation Science, 2012, 23, 805-821.	2.2	228
7	A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science, 2013, 24, 942-948.	2.2	209
8	Ecological correlates of endozoochory by herbivores. Functional Ecology, 2002, 16, 296-304.	3.6	201
9	Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. Journal of Ecology, 2004, 92, 893-905.	4.0	201
10	Sampling plant functional traits: What proportion of the species need to be measured?. Applied Vegetation Science, 2007, 10, 91-96.	1.9	193
11	Bracken Distribution in Great Britain: Strategies for its Control and the Sustainable Management of Marginal Land. Annals of Botany, 2000, 85, 37-46.	2.9	178
12	Functional diversity indices reveal the impacts of land use intensification on plant community assembly. Journal of Ecology, 2011, 99, 1143-1151.	4.0	156
13	Seed dispersal by ungulates as an ecological filter: a traitâ€based metaâ€analysis. Oikos, 2015, 124, 1109-1120.	2.7	130
14	The effects of livestock grazing on foliar arthropods associated with bird diet in upland grasslands of Scotland. Journal of Applied Ecology, 2008, 45, 279-287.	4.0	121
15	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	7.1	113
16	Plant functional connectivity – integrating landscape structure and effective dispersal. Journal of Ecology, 2017, 105, 1648-1656.	4.0	110
17	Women and Global South strikingly underrepresented among topâ€publishing ecologists. Conservation Letters, 2021, 14, e12797.	5.7	105
18	Functional trait metrics are sensitive to the completeness of the species' trait data?. Methods in Ecology and Evolution, 2014, 5, 9-15.	5.2	98

#	Article	IF	CITATIONS
19	Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Functional Ecology, 2016, 30, 98-107.	3.6	97
20	The conservation value of bracken Pteridium aquilinum (L.) Kuhn-dominated communities in the UK, and an assessment of the ecological impact of bracken expansion or its removal. Biological Conservation, 1992, 62, 101-114.	4.1	94
21	Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology, 2008, 96, 355-366.	4.0	92
22	The Ecology of Bracken: Its Role in Succession and Implications for Control. Annals of Botany, 2000, 85, 3-15.	2.9	90
23	Does chemical composition of individual Scots pine trees determine the biodiversity of their associated ground vegetation?. Ecology Letters, 2005, 8, 364-369.	6.4	90
24	The role of the seed bank, seed rain and the timing of disturbance in gap regeneration. Journal of Vegetation Science, 2005, 16, 121-130.	2.2	86
25	Multivariate identification of plant functional response and effect traits in an agricultural landscape. Ecology, 2011, 92, 1353-1365.	3.2	85
26	Relative climatic, edaphic and management controls of plant functional trait signatures. Journal of Vegetation Science, 2009, 20, 148-159.	2.2	84
27	Patterns of bird functional diversity on landâ€bridge island fragments. Journal of Animal Ecology, 2013, 82, 781-790.	2.8	79
28	Are richness patterns of common and rare species equally well explained by environmental variables?. Ecography, 2011, 34, 529-539.	4.5	75
29	Grazing of lowland heath in England: Management methods and their effects on healthland vegetation. Biological Conservation, 1997, 79, 1-13.	4.1	73
30	Root traits predict decomposition across a landscapeâ€scale grazing experiment. New Phytologist, 2014, 203, 851-862.	7.3	73
31	The cascading impacts of livestock grazing in upland ecosystems: a 10â€year experiment. Ecosphere, 2015, 6, 1-15.	2.2	72
32	Low intensity, mixed livestock grazing improves the breeding abundance of a common insectivorous passerine. Biology Letters, 2006, 2, 636-638.	2.3	71
33	Intraspecific genetic diversity and composition modify speciesâ€level diversity–productivity relationships. New Phytologist, 2015, 205, 720-730.	7.3	71
34	Rehabilitation of degraded dry heather [Calluna vulgaris (L.) Hull] moorland by controlled sheep grazing. Biological Conservation, 2003, 114, 389-400.	4.1	70
35	Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132795.	2.6	65
36	The effects of controlled sheep grazing on the dynamics of upland Agrostis-Festuca grassland. Journal of Applied Ecology, 1999, 36, 886-900.	4.0	64

#	Article	IF	CITATIONS
37	Sources of plants colonizing experimentally disturbed patches in an acidic grassland, in eastern England. Journal of Ecology, 1998, 86, 1032-1041.	4.0	63
38	Edaphic factors influence the longevity of seeds in the soil. Plant Ecology, 2012, 213, 57-65.	1.6	61
39	Facilitation and biodiversity–ecosystem function relationships in crop production systems and their role in sustainable farming. Journal of Ecology, 2021, 109, 2054-2067.	4.0	58
40	Field work ethics in biological research. Biological Conservation, 2016, 203, 268-271.	4.1	56
41	Drivers of carabid functional diversity: abiotic environment, plant functional traits, or plant functional diversity?. Ecology, 2014, 95, 1213-1224.	3.2	55
42	Long-term impacts of extensive grazing and abandonment on the species composition, richness, diversity and productivity of agricultural grassland. Agriculture, Ecosystems and Environment, 2009, 134, 190-200.	5.3	54
43	An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecology and Evolution, 2014, 4, 2799-2811.	1.9	53
44	Changes in the rhizome system of bracken subjected to long-term experimental treatment. Journal of Applied Ecology, 2003, 40, 508-522.	4.0	48
45	Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia, 2011, 167, 209-218.	2.0	48
46	Impacts of climate, management and nitrogen deposition on the dynamics of lowland heathland. Journal of Vegetation Science, 2001, 12, 797-806.	2.2	45
47	The potential for lowland heath regeneration following plantation removal. Biological Conservation, 2002, 108, 247-258.	4.1	45
48	Leaf dry matter content as a predictor of grassland litter decomposition: a test of the â€~mass ratio hypothesis'. Plant and Soil, 2011, 342, 49-57.	3.7	45
49	Species composition of coastal dune vegetation in Scotland has proved resistant to climate change over a third of a century. Global Change Biology, 2015, 21, 3738-3747.	9.5	45
50	Rehabilitation of degraded Calluna vulgaris (L.) Hull-dominated wet heath by controlled sheep grazing. Biological Conservation, 2002, 107, 351-363.	4.1	44
51	Buffering effects of soil seed banks on plant community composition in response to land use and climate. Global Ecology and Biogeography, 2021, 30, 128-139.	5.8	41
52	Title is missing!. Plant Ecology, 2003, 166, 93-105.	1.6	40
53	Control of Pteridium aquilinum: Meta-analysis of a Multi-site Study in the UK. Annals of Botany, 2008, 101, 957-970.	2.9	40
54	Overcoming resistance and resilience of an invaded community is necessary for effective restoration: a multiâ€site bracken control study. Journal of Applied Ecology, 2013, 50, 156-167.	4.0	40

#	Article	IF	CITATIONS
55	A Model of Bracken (Pteridium aquilinum) Growth and the Effects of Control Strategies and Changing Climate. Journal of Applied Ecology, 1994, 31, 145.	4.0	39
56	Geostatistics, spatial rate of change analysis and boundary detection in plant ecology and biogeography. Progress in Physical Geography, 2006, 30, 201-231.	3.2	39
57	The bracken problem in Great Britain: Its present extent and future changes. Applied Geography, 1996, 16, 65-86.	3.7	37
58	Potential climatic control of seedbank density. Seed Science Research, 1999, 9, 101-110.	1.7	37
59	Modelling the Effects of Climate Change on the Growth of Bracken (Pteridium aquilinum) in Britain. Journal of Applied Ecology, 1996, 33, 561.	4.0	36
60	Comparison of techniques to increase Calluna vulgaris cover on heathland invaded by grasses in Breckland, south east England. Biological Conservation, 2000, 95, 227-232.	4.1	36
61	Species spread and persistence: implications for experimental design and habitat reâ€creation. Applied Vegetation Science, 2002, 5, 75-86.	1.9	36
62	Possible interactions between environmental factors in determining species optima. Journal of Vegetation Science, 2008, 19, 201-208.	2.2	36
63	Effects of the litter layer of Pteridium aquilinum on seed banks under experimental restoration. Applied Vegetation Science, 2006, 9, 127.	1.9	35
64	Active and adaptive plasticity in a changing climate. Trends in Plant Science, 2022, 27, 717-728.	8.8	35
65	The effects of tropospheric ozone on the species dynamics of calcareous grassland. Environmental Pollution, 2006, 144, 500-509.	7.5	34
66	Highâ€natureâ€value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. Journal of Applied Ecology, 2015, 52, 1073-1081.	4.0	34
67	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
68	The Variable Responses of Bracken Fronds to Control Treatments in Great Britain. Annals of Botany, 2000, 85, 17-29.	2.9	33
69	Forty years of change in Scottish grassland vegetation: Increased richness, decreased diversity and increased dominance. Biological Conservation, 2017, 212, 327-336.	4.1	33
70	Global patterns of potential future plant diversity hidden in soil seed banks. Nature Communications, 2021, 12, 7023.	12.8	32
71	Calcium plus magnesium indicates digestibility: the significance of the second major axis of plant chemical variation for ecological processes. Ecology Letters, 2018, 21, 885-895.	6.4	31
72	Longâ€ŧerm impacts of changed grazing regimes on the vegetation of heterogeneous upland grasslands. Journal of Applied Ecology, 2019, 56, 1794-1805.	4.0	29

#	Article	IF	CITATIONS
73	A global database for metacommunity ecology, integrating species, traits, environment and space. Scientific Data, 2020, 7, 6.	5.3	28
74	Optimizing Carbon Storage Within a Spatially Heterogeneous Upland Grassland Through Sheep Grazing Management. Ecosystems, 2014, 17, 418-429.	3.4	27
75	Recreation of lowland heathland on ex-arable land: assessing the limiting processes on two sites with contrasting soil fertility and pH. Journal of Applied Ecology, 2007, 44, 573-582.	4.0	26
76	Control of Bracken and the Restoration of Heathland. V. Effects of Bracken Control Treatments on the Rhizome and its Relationship with Frond Performance. Journal of Applied Ecology, 1993, 30, 107.	4.0	25
77	The extended phenotype of Scots pine Pinus sylvestris structures the understorey assemblage. Ecography, 2006, 29, 451-457.	4.5	25
78	Competing conservation goals, biodiversity or ecosystem services: Element losses and species recruitment in a managed moorland–bracken model system. Journal of Environmental Management, 2007, 85, 1034-1047.	7.8	25
79	Long-term impacts of nitrogen deposition on coastal plant communities. Environmental Pollution, 2016, 212, 337-347.	7.5	25
80	The Ecology of the Strandline Annuals Cakile Maritima and Salsola Kali. II. The Role of Nitrogen in Controlling Plant Performance. Journal of Ecology, 1991, 79, 155.	4.0	24
81	Biomass production of upland vegetation types in England and Wales. Grass and Forage Science, 2002, 57, 373-388.	2.9	24
82	The response of plant and insect assemblages to the loss of Calluna vulgaris from upland vegetation. Biological Conservation, 2006, 128, 335-345.	4.1	24
83	Grazing impacts on Auchenorrhyncha diversity and abundance on a Scottish upland estate. Insect Conservation and Diversity, 2012, 5, 67-74.	3.0	24
84	Potential and realised contribution of endozoochory to seedling establishment. Basic and Applied Ecology, 2009, 10, 656-661.	2.7	23
85	Influence of livestock grazing on meadow pipit foraging behaviour in upland grassland. Basic and Applied Ecology, 2009, 10, 662-670.	2.7	23
86	How to Replicate the Functions and Biodiversity of a Threatened Tree Species? The Case of Fraxinus excelsior in Britain. Ecosystems, 2016, 19, 573-586.	3.4	23
87	A comparison of regeneration dynamics following gap creation at two geographically contrasting heathland sites. Journal of Applied Ecology, 2000, 37, 832-844.	4.0	22
88	Intra-Specific Leaf Trait Variation: Management and Fertility Matter More than the Climate at Continental Scales. Folia Geobotanica, 2013, 48, 355-371.	0.9	22
89	Moorland vegetation succession after the control of bracken with asulam. Agriculture, Ecosystems and Environment, 1997, 62, 41-52.	5.3	21
90	The seedbanks of the Breckland heaths and heath grasslands, eastern England, and their relationship to the vegetation and the effects of management. Journal of Biogeography, 1997, 24, 375-390.	3.0	21

#	Article	IF	CITATIONS
91	A functional assessment of the response of grassland vegetation to reduced grazing and abandonment. Journal of Vegetation Science, 2010, 21, 683.	2.2	21
92	Shifts in functional traits and functional diversity between vegetation and seed bank. Journal of Vegetation Science, 2013, 24, 865-876.	2.2	21
93	Understorey plant community composition reflects invasion history decades after invasive Rhododendron has been removed. Journal of Applied Ecology, 2018, 55, 874-884.	4.0	21
94	Vegetation re-establishment on land previously subject to control of Pteridium aquilinum by herbicide. Applied Vegetation Science, 2000, 3, 95-104.	1.9	20
95	Regeneration of <i>Salix arbuscula</i> and <i>Salix lapponum</i> within a Large Mammal Exclosure: The Impacts of Microsite and Herbivory. Restoration Ecology, 2010, 18, 1-9.	2.9	20
96	Intraspecific trait variation in grassland plant species reveals fine-scale strategy trade-offs and size differentiation that underpins performance in ecological communities. Botany, 2010, 88, 939-952.	1.0	20
97	Inferring temporal shifts in landuse intensity from functional response traits and functional diversity patterns: a study of Scotland's machair grassland. Oikos, 2014, 123, 334-344.	2.7	20
98	Landscape-scale vegetation patterns influence small-scale grazing impacts. Biological Conservation, 2015, 192, 218-225.	4.1	20
99	Plant Trait Assembly Affects Superiority of Grazer's Foraging Strategies in Species-Rich Grasslands. PLoS ONE, 2013, 8, e69800.	2.5	20
100	The effects of control on the biomass, carbohydrate content and bud reserves of bracken (Pteridium) Tj ETQq0 (124, 479-493.	0 0 rgBT /C 2.5	Overlock 10 Tf 19
101	Sediment Fluxes in Intertidal Biotopes: BIOTA II. Marine Pollution Bulletin, 1999, 37, 173-181.	5.0	19
102	Severity of impacts of an introduced species corresponds with regional ecoâ€evolutionary experience. Ecography, 2019, 42, 12-22.	4.5	19
103	Leaf Dry Matter Content Predicts Herbivore Productivity, but Its Functional Diversity Is Positively Related to Resilience in Grasslands. PLoS ONE, 2014, 9, e101876.	2.5	19
104	The Ecology of the Strandline Annuals Cakile Maritima and Salsola Kali. I. Environmental Factors Affecting Plant Performance. Journal of Ecology, 1991, 79, 143.	4.0	18
105	Moorland restoration aids the reassembly of associated phytophagous insects. Biological Conservation, 2006, 132, 395-404.	4.1	18
106	A trait-based approach to crop–weed interactions. European Journal of Agronomy, 2015, 70, 22-32.	4.1	18
107	The effectiveness of old and new strategies for the longâ€ŧerm control of <i>Pteridium aquilinum</i> , an 8â€year test. Weed Research, 2016, 56, 247-257.	1.7	18
108	Decline in atmospheric sulphur deposition and changes in climate are the major drivers of long-term change in grassland plant communities in Scotland. Environmental Pollution, 2018, 235, 956-964.	7.5	18

#	Article	IF	CITATIONS
109	Species spread and persistence: Implications for experimental design and habitat reâ€creation. Applied Vegetation Science, 2002, 5, 75.	1.9	18
110	Temporal Responses of Propagule Banks during Ecological Restoration in the United Kingdom. Restoration Ecology, 2007, 15, 103-117.	2.9	17
111	Impacts of extensive grazing and abandonment on grassland soils and productivity. Agriculture, Ecosystems and Environment, 2010, 139, 476-482.	5.3	17
112	Vegetation development on moorland after control ofPteridium aquilinumwith asulam. Journal of Vegetation Science, 1992, 3, 707-710.	2.2	16
113	Introducing spatial grazing impacts into the prediction of moorland vegetation dynamics. Landscape Ecology, 2004, 19, 817-827.	4.2	16
114	Setting sustainable grazing levels for heather moorland: a multiâ€site analysis. Journal of Applied Ecology, 2009, 46, 363-368.	4.0	16
115	Changes in the Management of Scottish Machair Communities and Associated Habitats from the 1970s to the Present. Scottish Geographical Journal, 2011, 127, 267-287.	1.1	16
116	Experimental evidence that livestock grazing intensity affects cyclic vole population regulation processes. Population Ecology, 2014, 56, 55-61.	1.2	16
117	Drivers of species richness and compositional change in Scottish coastal vegetation. Applied Vegetation Science, 2017, 20, 183-193.	1.9	16
118	Change to ecosystem properties through changing the dominant species: Impact of Pteridium aquilinum -control and heathland restoration treatments on selected soil properties. Journal of Environmental Management, 2018, 207, 1-9.	7.8	16
119	A multiâ€ s ite assessment of the effectiveness of <i>Pteridium aquilinum</i> control in Great Britain. Applied Vegetation Science, 2007, 10, 429-440.	1.9	15
120	Effectiveness of Calluna-heathland restoration methods after invasive plant control. Ecological Engineering, 2013, 54, 218-226.	3.6	15
121	Using compositional and functional indicators for biodiversity conservation monitoring of semi-natural grasslands in Scotland. Biological Conservation, 2014, 175, 82-93.	4.1	15
122	Combination of herbivore removal and nitrogen deposition increases upland carbon storage. Global Change Biology, 2015, 21, 3036-3048.	9.5	15
123	What is the most ecologically-meaningful metric of nitrogen deposition?. Environmental Pollution, 2019, 247, 319-331.	7.5	15
124	Directional trends in species composition over time can lead to a widespread overemphasis of yearâ€toâ€year asynchrony. Journal of Vegetation Science, 2020, 31, 792-802.	2.2	15
125	Isolation of habitat patches limits colonisation by moorland Hemiptera. Journal of Insect Conservation, 2009, 13, 29-36.	1.4	14
126	Measured estimates of semi-natural terrestrial NPP in Great Britain: comparison with modelled values, and dependence on atmospheric nitrogen deposition. Biogeochemistry, 2019, 144, 215-227.	3.5	14

#	Article	IF	CITATIONS
127	A restoration experiment on moorland infested by Pteridium aquilinum: Plant species responses. Agriculture, Ecosystems and Environment, 2007, 119, 53-59.	5.3	13
128	Experimental evidence that livestock grazing intensity affects the activity of a generalist predator. Acta Oecologica, 2013, 49, 12-16.	1.1	13
129	Identifying the multiâ€scale spatial structure of plant community determinants of an important national resource. Journal of Vegetation Science, 2014, 25, 184-197.	2.2	13
130	Scotland's natural capital asset index: Tracking nature's contribution to national wellbeing. Ecological Indicators, 2019, 107, 105645.	6.3	13
131	Increased crop diversity reduces the functional space available for weeds. Weed Research, 2020, 60, 121-131.	1.7	13
132	Evaluation of a bracken (Pteridium aquilinum (L.) Kuhn) growth model in predicting the effects of control strategies across a range of climatic zones in Great Britain. Annals of Applied Biology, 1997, 130, 305-318.	2.5	12
133	Factors Affecting the Restoration of Heathland and Acid Grassland on <i>Pteridium aquilinum</i> –Infested Land across the United Kingdom: A Multisite Study. Restoration Ecology, 2008, 16, 553-562.	2.9	12
134	Spatiotemporal scaling of plant species richness and functional diversity in a temperate semiâ€natural grassland. Ecography, 2018, 41, 845-856.	4.5	12
135	A review of current bracken control and associated vegetation strategies in Great Britain. Web Ecology, 2002, 3, 6-11.	1.6	12
136	Long-term recovery of bracken (Pteridium aquilinum (L.) Kuhn) after asulam spraying. Annals of Applied Biology, 1993, 122, 519-530.	2.5	10
137	Efficacy of bracken (Pteridium aquilinum (L.) Kuhn) control treatments across a range of climatic zones in Great Britain Annals of Applied Biology, 1997, 130, 283-303.	2.5	10
138	Effects of restoration treatments on the diaspore bank under dense Pteridium stands in the UK. Applied Vegetation Science, 2003, 6, 189.	1.9	10
139	Effects of experimental restoration on the diaspore bank of an upland moor degraded byPteridium aquilinum invasion. Land Degradation and Development, 2007, 18, 659-669.	3.9	10
140	Changes in breeding wader assemblages, vegetation and land use within machair environments over three decades. Bird Study, 2014, 61, 287-300.	1.0	10
141	Seed limitation, not soil legacy effects, prevents native understorey from establishing in oak woodlands in Scotland after removal of <i>Rhododendron ponticum</i> . Restoration Ecology, 2018, 26, 865-872.	2.9	10
142	Invasion by Rhododendron ponticum depletes the native seed bank with long-term impacts after its removal. Biological Invasions, 2018, 20, 375-384.	2.4	10
143	Using species records and ecological attributes of bryophytes to develop an ecosystem health indicator. Ecological Indicators, 2019, 104, 127-136.	6.3	10
144	Intercropping drives plant phenotypic plasticity and changes in functional trait space. Basic and Applied Ecology, 2022, 61, 41-52.	2.7	10

#	Article	IF	CITATIONS
145	Using plant functional traits as a link between land use and bee foraging abundance. Acta Oecologica, 2013, 50, 32-39.	1.1	9
146	Climate drives temporal replacement and nestedâ€resultant richness patterns of Scottish coastal vegetation. Ecography, 2016, 39, 754-762.	4.5	8
147	Longâ€ŧerm changes in ground beetle (<scp>C</scp> oleoptera: <scp>C</scp> arabidae) assemblages in <scp>S</scp> cotland. Ecological Entomology, 2016, 41, 157-167.	2.2	8
148	Continuing influences of introduced hedgehogs Erinaceus europaeus as a predator of wader (Charadrii) eggs four decades after their release on the Outer Hebrides, Scotland. Biological Invasions, 2017, 19, 1981-1987.	2.4	8
149	Long-term functional structure and functional diversity changes in Scottish grasslands. Agriculture, Ecosystems and Environment, 2017, 247, 352-362.	5.3	8
150	Phenological changes of the most commonly sampled ground beetle (Coleoptera: Carabidae) species in the UK environmental change network. International Journal of Biometeorology, 2018, 62, 1063-1074.	3.0	8
151	A functional assessment of the impact of changing grazing management of upland grassland mosaics. Applied Vegetation Science, 2020, 23, 539-550.	1.9	8
152	Interspecific networks in ground beetle (Coleoptera: Carabidae) assemblages. Ecological Indicators, 2016, 68, 134-141.	6.3	7
153	Disparities between plant community responses to nitrogen deposition and critical loads in UK semi-natural habitats. Atmospheric Environment, 2020, 239, 117478.	4.1	7
154	Recovery of Moorland Vegetation after Aerial Spraying of Bracken (Pteridium aquilinum (L.) Kuhn) with Asulam. Restoration Ecology, 2005, 13, 718-724.	2.9	6
155	Milling plant and soil material in plastic tubes over-estimates carbon and under-estimates nitrogen concentrations. Plant and Soil, 2013, 369, 509-513.	3.7	6
156	Linking functional traits and species preferences to species' abundance and occupancy trends through time to identify habitat changes in coastal ecosystems. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 27, 35-44.	2.7	6
157	Livestock grazing impacts components of the breeding productivity of a common upland insectivorous passerine: Results from a longâ€ŧerm experiment. Journal of Applied Ecology, 2020, 57, 1514-1523.	4.0	6
158	The dynamics of vegetation grazed by a foodâ€limited population of Soay sheep on St Kilda. Journal of Ecology, 2021, 109, 3988-4006.	4.0	6
159	The impacts of pollination mode, plant characteristics and local density on the reproductive success of a scarce plant species, Salix arbuscula. Plant Ecology, 2010, 211, 367-377.	1.6	5
160	Species but not genotype diversity strongly impacts the establishment of rare colonisers. Functional Ecology, 2017, 31, 1462-1470.	3.6	5
161	Does crop genetic diversity support positive biodiversity effects under experimental drought?. Basic and Applied Ecology, 2021, 56, 431-445.	2.7	5
162	Fineâ€scale hydrological niche segregation in coastal dune slacks. Journal of Vegetation Science, 2021, 32, e13085.	2.2	5

#	Article	IF	CITATIONS
163	Identifying drivers of change in bryophyte and lichen species occupancy in Scotland. Ecological Indicators, 2022, 139, 108889.	6.3	5
164	Seeds: The Ecology of Regeneration in Plant Communities, 2nd edn. Grass and Forage Science, 2001, 56, 203-203.	2.9	4
165	The epiphytic bryophyte community of Atlantic oak woodlands shows clear signs of recovery following the removal of invasive Rhododendron ponticum. Biological Conservation, 2017, 212, 96-104.	4.1	4
166	Do assembly rules for bird communities operate in small, fragmented woodlands in an agricultural landscape?. Community Ecology, 2001, 1, 171-179.	0.9	4
167	Sampling plant functional traits: What proportion of the species need to be measured?. Applied Vegetation Science, 2007, 10, 91.	1.9	4
168	Environmental modifiers of the relationship between water table depth and Ellenberg's indicator of soil moisture. Ecological Indicators, 2021, 132, 108320.	6.3	4
169	Restoration trajectory of carabid functional traits in a formerly afforested blanket bog. Acta Zoologica Academiae Scientiarum Hungaricae, 2019, 65, 33-56.	0.5	4
170	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	2.2	4
171	Common species contribute little to spatial patterns of functional diversity across scales in coastal grasslands. Journal of Ecology, 2022, 110, 1149-1160.	4.0	4
172	Nesting preferences of the threatened wood ant Formica exsecta (Hymenoptera: Formicidae); implications for conservation in Scotland. Journal of Insect Conservation, 2010, 14, 269-276.	1.4	3
173	Microsite affects willow sapling recovery from bank vole (Myodes glareolus) herbivory, but does not affect grazing risk. Annals of Botany, 2013, 112, 731-739.	2.9	3
174	Long-term trends in restored moorland vegetation assemblages. Community Ecology, 2014, 15, 104-112.	0.9	3
175	Crop presence, but not genetic diversity, impacts on the rare arable plant <i>Valerianella rimosa</i> . Plant Ecology and Diversity, 2017, 10, 495-507.	2.4	3
176	Functional similarity analysis highlights ecosystem impacts and restoration needs. Applied Vegetation Science, 2018, 21, 258-266.	1.9	3
177	Habitat impact assessment detects spatially driven patterns of grazing impacts in habitat mosaics but overestimates damage. Journal for Nature Conservation, 2018, 45, 20-29.	1.8	3
178	Within country targeting of agri-environment funding: A test of different methods. Global Ecology and Conservation, 2019, 17, e00574.	2.1	3
179	Identifying suitable restoration sites for a scarce subarctic willow (Salix arbuscula) using different information sources and methods. Plant Ecology and Diversity, 2008, 1, 105-114.	2.4	2
180	Mycorrhizal status is a poor predictor of the distribution of herbaceous species along the gradient of soil nutrient availability in coastal and grassland habitats. Mycorrhiza, 2021, 31, 577-587.	2.8	2

#	Article	IF	CITATIONS
181	Increased grazing drives homogenisation but reduced grazing increases turnover in upland habitat mosaics. Biodiversity and Conservation, 2021, 30, 4279-4295.	2.6	2
182	Patterns of variation in plant diversity vary over different spatial levels in seasonal coastal wetlands. Diversity and Distributions, 2022, 28, 1875-1890.	4.1	2
183	Clade composition of a plant community indicates its phylogenetic diversity. Ecology and Evolution, 2020, 10, 3747-3757.	1.9	1