
Valerio Persico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5973594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FPFTS: A joint fuzzy particle swarm optimization mobilityâ€aware approach to fog task scheduling algorithm for Internet of Things devices. Software - Practice and Experience, 2021, 51, 2519-2539.	3.6	45
2	Characterization and analysis of cloud-to-user latency: The case of Azure and AWS. Computer Networks, 2021, 184, 107693.	5.1	10
3	XAI Meets Mobile Traffic Classification: Understanding and Improving Multimodal Deep Learning Architectures. IEEE Transactions on Network and Service Management, 2021, 18, 4225-4246.	4.9	102
4	Characterization and Prediction of Mobile-App Traffic Using Markov Modeling. IEEE Transactions on Network and Service Management, 2021, 18, 907-925.	4.9	45
5	Unveiling MIMETIC: Interpreting Deep Learning Traffic Classifiers via XAI Techniques. , 2021, , .		1
6	FUPE: A security driven task scheduling approach for SDN-based IoT–Fog networks. Journal of Information Security and Applications, 2021, 60, 102853.	2.5	24
7	The Art of Detecting Forwarding Detours. IEEE Transactions on Network and Service Management, 2021, 18, 3619-3632.	4.9	2
8	Packet-level prediction of mobile-app traffic using multitask Deep Learning. Computer Networks, 2021, 200, 108529.	5.1	20
9	Characterizing and Modeling Traffic of Communication and Collaboration Apps Bloomed With COVID-19 Outbreak. , 2021, , .		1
10	A Dive into the Dark Web: Hierarchical Traffic Classification of Anonymity Tools. IEEE Transactions on Network Science and Engineering, 2020, 7, 1043-1054.	6.4	52
11	Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for HealthcareÂ4.0. Journal of Industrial Information Integration, 2020, 18, 100129.	6.4	365
12	A Big Data-Enabled Hierarchical Framework for Traffic Classification. IEEE Transactions on Network Science and Engineering, 2020, 7, 2608-2619.	6.4	19
13	eMES: Easing Maintenance of Entity Services in Service Oriented Software-Defined Internet of Things. , 2019, , .		1
14	Software-Defined Cloud Computing: A Systematic Review on Latest Trends and Developments. IEEE Access, 2019, 7, 93294-93314.	4.2	52
15	Know your Big Data Trade-offs when Classifying Encrypted Mobile Traffic with Deep Learning. , 2019, , .		28
16	Filtering the Noise to Reveal Inter-Domain Lies. , 2019, , .		4
17	A Survey on Information and Communication Technologies for Industry 4.0: State-of-the-Art, Taxonomies, Perspectives, and Challenges. IEEE Communications Surveys and Tutorials, 2019, 21, 3467-3501.	39.4	216
18	Characterizing Cloud-to-User Latency as Perceived by AWS and Azure Users Spread over the Globe. , 2019, , .		13

VALERIO PERSICO

#	Article	IF	CITATIONS
19	MIRAGE: Mobile-app Traffic Capture and Ground-truth Creation. , 2019, , .		38
20	The role of Information and Communication Technologies in healthcare: taxonomies, perspectives, and challenges. Journal of Network and Computer Applications, 2018, 107, 125-154.	9.1	256
21	A comprehensive survey on internet outages. Journal of Network and Computer Applications, 2018, 113, 36-63.	9.1	47
22	Benchmarking big data architectures for social networks data processing using public cloud platforms. Future Generation Computer Systems, 2018, 89, 98-109.	7.5	52
23	A Fuzzy Approach Based on Heterogeneous Metrics for Scaling Out Public Clouds. IEEE Transactions on Parallel and Distributed Systems, 2017, 28, 2117-2130.	5.6	24
24	Measuring Networks Using IP Options. IEEE Network, 2017, 31, 30-36.	6.9	1
25	A sleep scheduling approach based on learning automata for WSN partialcoverage. Journal of Network and Computer Applications, 2017, 80, 67-78.	9.1	94
26	SOMETIME: Software defined network-based available Bandwidth Measurement In MONROE. , 2017, , .		10
27	On the performance of the wide-area networks interconnecting public-cloud datacenters around the globe. Computer Networks, 2017, 112, 67-83.	5.1	27
28	An experimental evaluation of the impact of heterogeneous scenarios and virtualization on the available bandwidth estimation tools. , 2017, , .		4
29	A First Look at Public-Cloud Inter-Datacenter Network Performance. , 2016, , .		8
30	On the Network Performance of Amazon S3 Cloud-Storage Service. , 2016, , .		21
31	An efficient partial coverage algorithm for wireless sensor networks. , 2016, , .		12
32	CloudSurf: A platform for monitoring public-cloud networks. , 2016, , .		8
33	A First Look at an Automated Pipeline for NGS-Based Breast-Cancer Diagnosis: The CArDIGAN Approach. , 2016, , .		1
34	How and how much traceroute confuses our understanding of network paths. , 2016, , .		8
35	Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 2016, 56, 684-700.	7.5	1,726
36	On Network Throughput Variability in Microsoft Azure Cloud. , 2015, , .		16

VALERIO PERSICO

#	Article	IF	CITATIONS
37	Measuring network throughput in the cloud: The case of Amazon EC2. Computer Networks, 2015, 93, 408-422.	5.1	36
38	Experimenting with alternative path tracing solutions. , 2015, , .		2
39	On the Integration of Cloud Computing and Internet of Things. , 2014, , .		357
40	The Greenhouse Effect Attack. , 2014, , .		2
41	On Network Throughput Variability in Microsoft Azure Cloud. , 2014, , .		ο
42	A Feedback-Control Approach for Resource Management in Public Clouds. , 2014, , .		0
43	Don't trust traceroute (completely). , 2013, , .		16
44	Pythia. , 2013, , .		13