
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5973563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolvable Skin Electronics by In Situ and In Operando Adaptation. Advanced Functional Materials, 2022, 32, 2106329.	14.9	21
2	Monolithic digital patterning of polyimide by laser-induced pyrolytic jetting. Chemical Engineering Journal, 2022, 428, 131050.	12.7	20
3	Transparent Air Filters with Active Thermal Sterilization. Nano Letters, 2022, 22, 524-532.	9.1	47
4	Metal-Oxide Nanomaterials Synthesis and Applications in Flexible and Wearable Sensors. ACS Nanoscience Au, 2022, 2, 64-92.	4.8	86
5	Facile fabrication of flexible metal grid transparent electrode using inkjet-printed dot array as sacrificial layer. Scientific Reports, 2022, 12, 1572.	3.3	4
6	Challenges and Strategies in Developing an Enzymatic Wearable Sweat Glucose Biosensor as a Practical Point-Of-Care Monitoring Tool for Type II Diabetes. Nanomaterials, 2022, 12, 221.	4.1	54
7	Soft multi-modal thermoelectric skin for dual functionality of underwater energy harvesting and thermoregulation. Nano Energy, 2022, 95, 107002.	16.0	29
8	Multi-Bandgap Monolithic Metal Nanowire Percolation Network Sensor Integration by Reversible Selective Laser-Induced Redox. Nano-Micro Letters, 2022, 14, 49.	27.0	26
9	Recent Advances in 1D Nanomaterialâ€Based Bioelectronics for Healthcare Applications. Advanced NanoBiomed Research, 2022, 2, .	3.6	0
10	Hierarchically Structured Conductive Polymer Binders with Silver Nanowires for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17340-17347.	8.0	17
11	Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures. Advanced Functional Materials, 2022, 32, .	14.9	43
12	Recent Advances in 1D Nanomaterialâ€Based Bioelectronics for Healthcare Applications. Advanced NanoBiomed Research, 2022, 2, .	3.6	8
13	Bioinspired Soft Robotic Fish for Wireless Underwater Control of Gliding Locomotion. Advanced Intelligent Systems, 2022, 4, .	6.1	14
14	Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Science Advances, 2022, 8, .	10.3	63
15	Thermoâ€Haptic Materials and Devices for Wearable Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2007376.	14.9	28
16	A Liquid Metal Based Multimodal Sensor and Haptic Feedback Device for Thermal and Tactile Sensation Generation in Virtual Reality. Advanced Functional Materials, 2021, 31, 2007772.	14.9	64
17	Digital Laser Micropainting for Reprogrammable Optoelectronic Applications. Advanced Functional Materials, 2021, 31, .	14.9	11
18	Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. Advanced Materials, 2021, 33, e2002397.	21.0	131

#	Article	IF	CITATIONS
19	Smart Stretchable Electronics for Advanced Human–Machine Interface. Advanced Intelligent Systems, 2021, 3, 2000157.	6.1	38
20	Advances in protective layer-coating on metal nanowires with enhanced stability and their applications. Applied Materials Today, 2021, 22, 100909.	4.3	38
21	Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nature Materials, 2021, 20, 100-107.	27.5	71
22	Highly stable silver–platinum core–shell nanowires for H ₂ O ₂ detection. Nanoscale, 2021, 13, 13129-13141.	5.6	15
23	Robust flexible electrodes with 2D interlayers. Nature Electronics, 2021, 4, 95-96.	26.0	8
24	Advances in air filtration technologies: structure-based and interaction-based approaches. Materials Today Advances, 2021, 9, 100134.	5.2	51
25	Preface for the Soft and Green Manufacturing and Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 743-744.	4.9	1
26	Metallic Nanowire Coupled CsPbBr ₃ Quantum Dots Plasmonic Nanolaser. Advanced Functional Materials, 2021, 31, 2102375.	14.9	23
27	From Chaos to Control: Programmable Crack Patterning with Molecular Order in Polymer Substrates. Advanced Materials, 2021, 33, e2008434.	21.0	13
28	Energy Harvesting Untethered Soft Electronic Devices. Advanced Healthcare Materials, 2021, 10, e2002286.	7.6	16
29	Recent advances in liquid-metal-based wearable electronics and materials. IScience, 2021, 24, 102698.	4.1	54
30	Reversible, Selective, Ultrawideâ€Range Variable Stiffness Control by Spatial Microâ€Water Molecule Manipulation. Advanced Science, 2021, 8, e2102536.	11.2	6
31	Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nature Communications, 2021, 12, 4658.	12.8	94
32	Dynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection. ACS Nano, 2021, 15, 15730-15740.	14.6	25
33	Functional Materials and Devices for XR (VR/AR/MR) Applications. Advanced Functional Materials, 2021, 31, 2106546.	14.9	32
34	Significant thermoelectric conversion efficiency enhancement of single layer graphene with substitutional silicon dopants. Nano Energy, 2021, 87, 106188.	16.0	25
35	High-temperature, thin, flexible and transparent Ni-based heaters patterned by laser-induced reductive sintering on colorless polyimide. Journal of Materials Chemistry C, 2021, 9, 5652-5661.	5.5	27
36	Development of Low-Shrink Epoxy Putty to Solve Appearance-Quality Defects of Carbon-Fiber-Reinforced Plastic Automotive Exterior Parts. Materials, 2021, 14, 6419.	2.9	1

SEUNG HWAN KO

#	Article	IF	CITATIONS
37	Metal nanowire based electronic devices. , 2021, , .		Ο
38	Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration. Advanced Materials, 2020, 32, e1905527.	21.0	221
39	Biohybrid Actuators for Soft Robotics: Challenges in Scaling Up. Actuators, 2020, 9, 96.	2.3	27
40	Laser-Induced Crystalline-Phase Transformation for Hematite Nanorod Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 48917-48927.	8.0	11
41	Thermally Controlled, Active Imperceptible Artificial Skin in Visibleâ€toâ€Infrared Range. Advanced Functional Materials, 2020, 30, 2003328.	14.9	47
42	Biocompatible Costâ€Effective Electrophysiological Monitoring with Oxidationâ€Free Cu–Au Core–Shell Nanowire. Advanced Materials Technologies, 2020, 5, 2000661.	5.8	33
43	70â€2: Low Temperature Process and Material Development for Flexible/Stretchable Transparent Conductor. Digest of Technical Papers SID International Symposium, 2020, 51, 1044-1047.	0.3	Ο
44	Selective Photo-thermal Conversion of Tungsten Oxide Sol Precursor for Electrochromic Smart Window Applications. Acta Materialia, 2020, 201, 528-534.	7.9	16
45	Shape morphing smart 3D actuator materials for micro soft robot. Materials Today, 2020, 41, 243-269.	14.2	130
46	Editorial: Window Electrodes for Emerging Thin Film Photovoltaics. Frontiers in Materials, 2020, 7, .	2.4	0
47	Recent progress in controlled nano/micro cracking as an alternative nano-patterning method for functional applications. Nanoscale Horizons, 2020, 5, 1036-1049.	8.0	18
48	Operation Range-Optimized Silver Nanowire Through Junction Treatment. Electronic Materials Letters, 2020, 16, 491-497.	2.2	7
49	Highly stretchable and oxidation-resistive Cu nanowire heater for replication of the feeling of heat in a virtual world. Journal of Materials Chemistry A, 2020, 8, 8281-8291.	10.3	55
50	Highly Customizable Transparent Silver Nanowire Patterning via Inkjetâ€Printed Conductive Polymer Templates Formed on Various Surfaces. Advanced Materials Technologies, 2020, 5, 2000042.	5.8	35
51	Recent Progress in Transparent Conductors Based on Nanomaterials: Advancements and Challenges. Advanced Materials Technologies, 2020, 5, 1900939.	5.8	44
52	Stretchable Skinâ€Like Cooling/Heating Device for Reconstruction of Artificial Thermal Sensation in Virtual Reality. Advanced Functional Materials, 2020, 30, 1909171.	14.9	71
53	A deep-learned skin sensor decoding the epicentral human motions. Nature Communications, 2020, 11, 2149.	12.8	148
54	Mechano-thermo-chromic device with supersaturated salt hydrate crystal for next-generation smart		0

window applications. , 2020, , .

#	Article	IF	CITATIONS
55	Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale, 2019, 11, 20356-20378.	5.6	90
56	Stretchable and Transparent Kirigami Conductor of Nanowire Percolation Network for Electronic Skin Applications. Nano Letters, 2019, 19, 6087-6096.	9.1	276
57	Directional Shape Morphing Transparent Walking Soft Robot. Soft Robotics, 2019, 6, 760-767.	8.0	45
58	A Review on Investigation of Graphene Thermal Property: Recent Development in Measurement Techniques. Multiscale Science and Engineering, 2019, 1, 267-279.	1.7	2
59	Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change. Science Advances, 2019, 5, eaav4916.	10.3	26
60	Crazy colour printing without ink. Nature, 2019, 570, 312-313.	27.8	3
61	Semipermanent Copper Nanowire Network with an Oxidationâ€Proof Encapsulation Layer. Advanced Materials Technologies, 2019, 4, 1800422.	5.8	29
62	A Review on Hierarchical Origami and Kirigami Structure for Engineering Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 147-161.	4.9	53
63	Boosted thermal conductance of polycrystalline graphene by spin-coated silver nanowires. International Journal of Heat and Mass Transfer, 2019, 134, 547-553.	4.8	10
64	Transparent wearable three-dimensional touch by self-generated multiscale structure. Nature Communications, 2019, 10, 2582.	12.8	64
65	Graphene as a material for energy generation and control: Recent progress in the control of graphene thermal conductivity by graphene defect engineering. Materials Today Energy, 2019, 12, 431-442.	4.7	76
66	Thermal conductivity reduction of multilayer graphene with fine grain sizes. JMST Advances, 2019, 1, 191-195.	1.9	7
67	Interfacial Thermal Contact Conductance inside the Graphene–Bi ₂ Te ₃ Heterostructure. Advanced Materials Interfaces, 2019, 6, 1900275.	3.7	9
68	Moiré-Free Imperceptible and Flexible Random Metal Grid Electrodes with Large Figure-of-Merit by Photonic Sintering Control of Copper Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 15773-15780.	8.0	35
69	Bending-durable membrane-electrode assembly using metal nanowires for bendable polymer electrolyte membrane fuel cell. Energy, 2019, 172, 874-880.	8.8	14
70	Significant thermal conductivity reduction of CVD graphene with relatively low hole densities fabricated by focused ion beam processing. Applied Physics Letters, 2019, 114, .	3.3	9
71	Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap. Composites Science and Technology, 2019, 174, 50-57.	7.8	61
72	Study on the oxidation of copper nanowire network electrodes for skin mountable flexible, stretchable and wearable electronics applications. Nanotechnology, 2019, 30, 074001.	2.6	42

#	Article	lF	CITATIONS
73	Highly Stable Niâ€Based Flexible Transparent Conducting Panels Fabricated by Laser Digital Patterning. Advanced Functional Materials, 2019, 29, 1806895.	14.9	97
74	Digitally patterned resistive micro heater as a platform for zinc oxide nanowire based micro sensor. Applied Surface Science, 2018, 447, 1-7.	6.1	24
75	Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate. Materials, 2018, 11, 2511.	2.9	4
76	Enhanced Thermoelectric Conversion Efficiency of CVD Graphene with Reduced Grain Sizes. Nanomaterials, 2018, 8, 557.	4.1	19
77	Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow. Nanomaterials, 2018, 8, 645.	4.1	14
78	Self-assembled stretchable photonic crystal for a tunable color filter. Optics Letters, 2018, 43, 3501.	3.3	24
79	An efficient reduced graphene-oxide filter for PM _{2.5} removal. Journal of Materials Chemistry A, 2018, 6, 16975-16982.	10.3	67
80	Perspective—A Brief Perspective on the Fabrication of Hierarchical Nanostructure for Solar Water Splitting Photoelectrochemical Cells. ECS Journal of Solid State Science and Technology, 2018, 7, Q131-Q135.	1.8	1
81	ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation. Nanomaterials, 2018, 8, 323.	4.1	16
82	A Transparent and Flexible Capacitiveâ€Force Touch Pad from Highâ€Aspectâ€Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics. Small Methods, 2018, 2, 1800077.	8.6	45
83	Two orders of magnitude suppression of graphene's thermal conductivity by heavy dopants (Si). Carbon, 2018, 138, 98-107.	10.3	28
84	Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics. Advanced Functional Materials, 2018, 28, 1801847.	14.9	198
85	Recent progress in silver nanowire based flexible/wearable optoelectronics. Journal of Materials Chemistry C, 2018, 6, 7445-7461.	5.5	125
86	A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes. Nanoscale, 2017, 9, 1978-1985.	5.6	101
87	Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices. Scientific Reports, 2017, 7, 41981.	3.3	212
88	Highly Controlled Nanoporous Ag Electrode by Vaporization Control of 2-Ethoxyethanol for a Flexible Supercapacitor Application. Langmuir, 2017, 33, 1854-1860.	3.5	8
89	Flexible and Transparent Cu Electronics by Lowâ€Temperature Acidâ€Assisted Laser Processing of Cu Nanoparticles. Advanced Materials Technologies, 2017, 2, 1600222.	5.8	59
90	Thermally stable Ag@ZrO 2 core-shell via atomic layer deposition. Materials Letters, 2017, 188, 372-374.	2.6	24

#	Article	IF	CITATIONS
91	Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector. Energy, 2017, 134, 412-419.	8.8	32
92	Plasmonicâ€Tuned Flash Cu Nanowelding with Ultrafast Photochemicalâ€Reducing and Interlocking on Flexible Plastics. Advanced Functional Materials, 2017, 27, 1701138.	14.9	98
93	High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network. Nano Letters, 2017, 17, 4339-4346.	9.1	196
94	Nanowire reinforced nanoparticle nanocomposite for highly flexible transparent electrodes: borrowing ideas from macrocomposites in steel-wire reinforced concrete. Journal of Materials Chemistry C, 2017, 5, 791-798.	5.5	52
95	Nanowire-on-Nanowire: All-Nanowire Electronics by On-Demand Selective Integration of Hierarchical Heterogeneous Nanowires. ACS Nano, 2017, 11, 12311-12317.	14.6	36
96	Effect of graphene-substrate conformity on the in-plane thermal conductivity of supported graphene. Carbon, 2017, 125, 39-48.	10.3	24
97	Selective Thermochemical Growth of Hierarchical ZnO Nanowire Branches on Silver Nanowire Backbone Percolation Network Heaters. Journal of Physical Chemistry C, 2017, 121, 22542-22549.	3.1	15
98	Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications. ACS Applied Materials & Interfaces, 2017, 9, 44609-44616.	8.0	270
99	Metal Nanowire-Coated Metal Woven Mesh for High-Performance Stretchable Transparent Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 40905-40913.	8.0	34
100	Performance variation of bendable polymer electrolyte fuel cell based on Ag nanowire current collector under mixed bending and twisting load. International Journal of Hydrogen Energy, 2017, 42, 1884-1890.	7.1	32
101	Flexible and highly sensitive multi-dimensional strain sensor with intersecting metal nanowire arrays. , 2017, , .		1
102	Recent progress in laser assisted digital selective nanomaterial processing. , 2017, , .		0
103	A three-dimensional metal grid mesh as a practical alternative to ITO. Nanoscale, 2016, 8, 14257-14263.	5.6	43
104	Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes. Journal of Materials Chemistry A, 2016, 4, 11365-11371.	10.3	154
105	Photoreduction Synthesis of Hierarchical Hematite/Silver Nanostructures for Photoelectrochemical Water Splitting. Energy Technology, 2016, 4, 271-277.	3.8	10
106	Flexible fuel cell using stiffness-controlled endplate. International Journal of Hydrogen Energy, 2016, 41, 6013-6019.	7.1	45
107	From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: A review and perspective of paradigm shift. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 209-222.	4.9	59
108	Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications. ACS Applied Materials & Interfaces, 2016, 8, 11575-11582.	8.0	160

#	Article	IF	CITATIONS
109	Digital selective laser methods for nanomaterials: From synthesis to processing. Nano Today, 2016, 11, 547-564.	11.9	118
110	Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells. Scientific Reports, 2016, 6, 30759.	3.3	166
111	Maskless Fabrication of Highly Robust, Flexible Transparent Cu Conductor by Random Crack Network Assisted Cu Nanoparticle Patterning and Laser Sintering. Advanced Electronic Materials, 2016, 2, 1600277.	5.1	63
112	Low temperature thermal engineering of nanoparticle ink for flexible electronics applications. Semiconductor Science and Technology, 2016, 31, 073003.	2.0	29
113	Random nanocrack, assisted metal nanowire-bundled network fabrication for a highly flexible and transparent conductor. RSC Advances, 2016, 6, 57434-57440.	3.6	60
114	Selective electro — thermal growth of zinc oxide nanowire on photolithographically patterned electrode for microsensor applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 173-177.	4.9	11
115	Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel. Nanotechnology, 2016, 27, 295201.	2.6	73
116	Highly Stretchable and Transparent Supercapacitor by Ag–Au Core–Shell Nanowire Network with High Electrochemical Stability. ACS Applied Materials & Interfaces, 2016, 8, 15449-15458.	8.0	243
117	Hybrid subtractive micro-patterning of a self-assembled SiO2 nano/microsphere monolayer. Journal of Micromechanics and Microengineering, 2015, 25, 105006.	2.6	2
118	Nanowires: Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction (Adv. Mater. 41/2015). Advanced Materials, 2015, 27, 6396-6396.	21.0	2
119	Control and Manipulation of Nano Cracks Mimicking Optical Wave. Scientific Reports, 2015, 5, 17292.	3.3	14
120	Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications. Advanced Materials, 2015, 27, 4744-4751.	21.0	667
121	Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction. Advanced Materials, 2015, 27, 6397-6403.	21.0	125
122	All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers. Journal of Materials Chemistry A, 2015, 3, 8339-8345.	10.3	68
123	Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design. ACS Nano, 2015, 9, 6059-6068.	14.6	82
124	Direct Micro Metal Patterning on Plastic Substrates by Electrohydrodynamic Jet Printing for Flexible Electronic Applications. ECS Journal of Solid State Science and Technology, 2015, 4, P3052-P3056.	1.8	16
125	Focused Energy Field Method for the Localized Synthesis and Direct Integration of 1D Nanomaterials on Microelectronic Devices. Advanced Materials, 2015, 27, 1207-1215.	21.0	55
126	The Effect of Particle Morphology on Unipolar Diffusion Charging of Silver Nanowires. Aerosol Science and Technology, 2015, 49, 290-298.	3.1	2

#	Article	IF	CITATIONS
127	Highly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation Networks. Nano Letters, 2015, 15, 5240-5247.	9.1	527
128	Advanced Inkjet Technology for 3D Micro-metal Structure Fabrication. , 2015, , 425-439.		4
129	Low ost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation. Advanced Materials, 2015, 27, 2762-2767.	21.0	126
130	A Hyperâ€Stretchable Elasticâ€Composite Energy Harvester. Advanced Materials, 2015, 27, 2866-2875.	21.0	350
131	Facile Photoreduction Process for ZnO/Ag Hierarchical Nanostructured Photoelectrochemical Cell Integrated with Supercapacitor. ECS Journal of Solid State Science and Technology, 2015, 4, P424-P428.	1.8	10
132	Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel. Journal of Nanoscience and Nanotechnology, 2015, 15, 2317-2323.	0.9	83
133	Ultrasonication assisted production of silver nanowires with low aspect ratio and their optical properties. Ultrasonics Sonochemistry, 2015, 22, 35-40.	8.2	19
134	Silver nanoparticle piezoresistive sensors fabricated by roll-to-roll slot-die coating and laser direct writing. Optics Express, 2014, 22, 8919.	3.4	27
135	Mechanical and environmental durability of roll-to-roll printed silver nanoparticle film using a rapid laser annealing process for flexible electronics. Microelectronics Reliability, 2014, 54, 2871-2880.	1.7	36
136	In Situ Monitoring of Laserâ€Assisted Hydrothermal Growth of ZnO Nanowires: Thermally Deactivating Growth Kinetics. Small, 2014, 10, 741-749.	10.0	39
137	Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems. Nanoscale, 2014, 6, 2895.	5.6	47
138	Digital 3D Local Growth of Iron Oxide Micro- and Nanorods by Laser-Induced Photothermal Chemical Liquid Growth. Journal of Physical Chemistry C, 2014, 118, 15448-15454.	3.1	25
139	Selective Sintering of Metal Nanoparticle Ink for Maskless Fabrication of an Electrode Micropattern Using a Spatially Modulated Laser Beam by a Digital Micromirror Device. ACS Applied Materials & Interfaces, 2014, 6, 2786-2790.	8.0	65
140	Long-Term Sustainable Aluminum Precursor Solution for Highly Conductive Thin Films on Rigid and Flexible Substrates. ACS Applied Materials & Interfaces, 2014, 6, 15480-15487.	8.0	23
141	Electrical mobility of silver nanowires in transition and continuum regimes. Journal of Aerosol Science, 2014, 72, 21-31.	3.8	4
142	Poster: Wearable input device for smart glasses based on a wristband-type motion-aware touch panel. , 2014, , .		1
143	Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite. Advanced Functional Materials, 2014, 24, 5671-5678.	14.9	297
144	Single Nanowire Resistive Nanoâ€heater for Highly Localized Thermoâ€Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth. Small, 2014, 10, 5015-5022.	10.0	12

#	Article	IF	CITATIONS
145	Full-Field Subwavelength Imaging Using a Scattering Superlens. Physical Review Letters, 2014, 113, 113901.	7.8	81
146	Performance enhancement in bendable fuel cell using highly conductive Ag nanowires. International Journal of Hydrogen Energy, 2014, 39, 7422-7427.	7.1	69
147	Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application. Journal of Power Sources, 2014, 246, 562-568.	7.8	134
148	Fast Plasmonic Laser Nanowelding for a Cuâ€Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics. Advanced Materials, 2014, 26, 5808-5814.	21.0	410
149	Review of the Multi-scale Nano-structure Approach to the Development of High Efficiency Solar Cells. Smart Science, 2014, 2, 54-62.	3.2	20
150	Maskless digital manufacturing of organic thin film transistor by femtosecond laser direct patterning. , 2014, , .		1
151	Nanoscale Heaters: Single Nanowire Resistive Nanoâ€heater for Highly Localized Thermoâ€Chemical Reactions: Localized Hierarchical Heterojunction Nanowire Growth (Small 24/2014). Small, 2014, 10, 5014-5014.	10.0	34
152	Smart Wristband: Touch-and-Motion–Tracking Wearable 3D Input Device for Smart Glasses. Lecture Notes in Computer Science, 2014, , 109-118.	1.3	6
153	Flexible Superhydrophobic Polymeric Surfaces with Microâ€/Nanohybrid Structures Using Black Silicon. Macromolecular Materials and Engineering, 2013, 298, 311-317.	3.6	12
154	Improvement of light-harvesting efficiency in dye-sensitized solar cells using silica beads embedded in a TiO2nanoporous structure. Journal Physics D: Applied Physics, 2013, 46, 024006.	2.8	20
155	Nanowires: Rapid, One-Step, Digital Selective Growth of ZnO Nanowires on 3D Structures Using Laser Induced Hydrothermal Growth (Adv. Funct. Mater. 26/2013). Advanced Functional Materials, 2013, 23, 3315-3315.	14.9	0
156	Rapid, One‣tep, Digital Selective Growth of ZnO Nanowires on 3D Structures Using Laser Induced Hydrothermal Growth. Advanced Functional Materials, 2013, 23, 3316-3323.	14.9	95
157	Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. Journal of Materials Chemistry A, 2013, 1, 8541.	10.3	90
158	Nanosecond laser ablation of silver nanoparticle film. Optical Engineering, 2013, 52, 024302.	1.0	22
159	Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate. Nanoscale, 2013, 5, 3698.	5.6	45
160	Overcoming the "retention vs. voltage―trade-off in nonvolatile organic memory: Ag nanoparticles covered with dipolar self-assembled monolayers as robust charge storage nodes. Organic Electronics, 2013, 14, 3260-3266.	2.6	19
161	Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate. Nanoscale Research Letters, 2013, 8, 489.	5.7	51
162	Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches. Nanoscale, 2013, 5, 11147.	5.6	77

#	Article	IF	CITATIONS
163	Vacuum-assisted microcontact printing (μCP) for aligned patterning of nano and biochemical materials. Journal of Materials Chemistry C, 2013, 1, 268-274.	5.5	18
164	Subwavelength light focusing using random nanoparticles. Nature Photonics, 2013, 7, 454-458.	31.4	160
165	An evaluation of the exposure in nadir observation of the JEM-EUSO mission. Astroparticle Physics, 2013, 44, 76-90.	4.3	102
166	Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink. ACS Nano, 2013, 7, 5024-5031.	14.6	389
167	Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics. Angewandte Chemie - International Edition, 2013, 52, 7718-7723.	13.8	101
168	Roomâ€Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conductingâ€Polymerâ€Assisted Joining for a Flexible Touchâ€Panel Application. Advanced Functional Materials, 2013, 23, 4171-4176.	14.9	449
169	Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth. Journal of Nanomaterials, 2013, 2013, 1-7.	2.7	18
170	Reinforcing Ag nanoparticle thin films with very long Ag nanowires. Nanotechnology, 2013, 24, 415704.	2.6	16
171	Pattern analysis of aligned nanowires in a microchannel. Measurement Science and Technology, 2013, 24, 035303.	2.6	7
172	Fabrication of submicron-sized metal patterns on a flexible polymer substrate by femtosecond laser sintering of metal nanoparticles. International Journal of Nanomanufacturing, 2013, 9, 468.	0.3	8
173	Rücktitelbild: Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics (Angew. Chem. 30/2013). Angewandte Chemie, 2013, 125, 8042-8042.	2.0	0
174	Subwavelength Light Control via Wavefront Shaping in Complex Media. , 2013, , .		0
175	Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics. PLoS ONE, 2012, 7, e42315.	2.5	106
176	Zinc Oxide Nanowire Forest for Pool Boiling Heat Transfer. Japanese Journal of Applied Physics, 2012, 51, 11PE11.	1.5	8
177	Fabrication of submicron-sized metal patterns on a flexible polymer substrate by femtosecond laser sintering of metal nanoparticles. , 2012, , .		Ο
178	3D micro-structures by piezoelectric inkjet printing of gold nanofluids. Journal of Micromechanics and Microengineering, 2012, 22, 055022.	2.6	66
179	Effect of carrier gas temperature on pentacene thin film formation by organic vapor-jet printing techniques. Thermochimica Acta, 2012, 542, 74-79.	2.7	2
180	Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning. Thermochimica Acta, 2012, 542, 52-56.	2.7	53

#	Article	IF	CITATIONS
181	Solution Processed Aluminum Paper for Flexible Electronics. Langmuir, 2012, 28, 13127-13135.	3.5	61
182	Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 2012, 4, 6408.	5.6	670
183	ZnO nano-tree growth study for high efficiency solar cell. Energy Procedia, 2012, 14, 1093-1098.	1.8	11
184	Digital Selective Growth of ZnO Nanowire Arrays from Inkjet-Printed Nanoparticle Seeds on a Flexible Substrate. Langmuir, 2012, 28, 4787-4792.	3.5	54
185	Patterning by controlled cracking. Nature, 2012, 485, 221-224.	27.8	213
186	Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth. Crystal Growth and Design, 2012, 12, 5598-5605.	3.0	184
187	Large-area nanoimprinting on various substrates by reconfigurable maskless laser direct writing. Nanotechnology, 2012, 23, 344012.	2.6	14
188	Hierarchical weeping willow nano-tree growth and effect of branching on dye-sensitized solar cell efficiency. Nanotechnology, 2012, 23, 194005.	2.6	69
189	Direct Micro/Nano Patterning of Multiple Colored Quantum Dots by Large Area and Multilayer Imprinting. Journal of Physical Chemistry C, 2012, 116, 11728-11733.	3.1	26
190	Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Advanced Materials, 2012, 24, 3326-3332.	21.0	909
191	Flexible Electronics: Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network (Adv. Mater. 25/2012). Advanced Materials, 2012, 24, 3325-3325.	21.0	12
192	Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles. Applied Physics A: Materials Science and Processing, 2012, 107, 161-171.	2.3	43
193	Zinc Oxide Nanowire Forest for Pool Boiling Heat Transfer. Japanese Journal of Applied Physics, 2012, 51, 11PE11.	1.5	15
194	One-Step Fabrication of Copper Electrode by Laser-Induced Direct Local Reduction and Agglomeration of Copper Oxide Nanoparticle. Journal of Physical Chemistry C, 2011, 115, 23664-23670.	3.1	165
195	Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Letters, 2011, 11, 666-671.	9.1	960
196	Simple ZnO Nanowires Patterned Growth by Microcontact Printing for High Performance Field Emission Device. Journal of Physical Chemistry C, 2011, 115, 11435-11441.	3.1	91
197	Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Optics Express, 2011, 19, 2573.	3.4	72
198	Optimum design of ordered bulk heterojunction organic photovoltaics. Solar Energy Materials and Solar Cells, 2011, 95, 3021-3024.	6.2	16

#	Article	IF	CITATIONS
199	Fiber laser annealing of indium-tin-oxide nanoparticles for large area transparent conductive layers and optical film characterization. Applied Physics A: Materials Science and Processing, 2011, 104, 29-38.	2.3	33
200	Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles. Advanced Materials, 2011, 23, 3176-3181.	21.0	176
201	Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication. Transactions of the Korean Society of Mechanical Engineers, B, 2011, 35, 533-538.	0.1	3
202	Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels. Applied Physics A: Materials Science and Processing, 2010, 100, 391-400.	2.3	3
203	Highâ€Throughput Nearâ€Field Optical Nanoprocessing of Solutionâ€Deposited Nanoparticles. Small, 2010, 6, 1812-1821.	10.0	66
204	Assembly of Acircular SnO2Rod Using Optical Tweezers and Laser Curing of Metal Nanoparticles. Japanese Journal of Applied Physics, 2010, 49, 05EA12.	1.5	5
205	Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. Journal of Micromechanics and Microengineering, 2010, 20, 125010.	2.6	141
206	Fabrication of Nano-scale Conductors by Selective Femtosecond Laser Sintering of Metal Nanoparticles. , 2010, , .		4
207	Nanoparticle Selective Laser Processing for a Flexible Display Fabrication. Japanese Journal of Applied Physics, 2010, 49, 05EC03.	1.5	53
208	Large Area Flexible Electronics Fabrication by Selective Laser Sintering of Nanoparticles with a Scanning Mirror. Materials Research Society Symposia Proceedings, 2009, 1196, 28.	0.1	0
209	Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics. Applied Physics Letters, 2009, 94, .	3.3	80
210	Organic Light Emitting Material Direct Writing by Nanomaterial Enabled Laser Transfer. Materials Research Society Symposia Proceedings, 2009, 1179, 44.	0.1	0
211	Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication. Applied Physics A: Materials Science and Processing, 2009, 94, 111-115.	2.3	79
212	Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate. International Journal of Heat and Mass Transfer, 2009, 52, 431-441.	4.8	150
213	Nanomaterial Enabled Laser Transfer of Temperature Sensitive Organic Light Emitting Diode Materials. , 2009, , .		0
214	Lithography-free high-resolution organic transistor arrays onÂpolymer substrate by low energy selective laser ablation ofÂinkjet-printed nanoparticle film. Applied Physics A: Materials Science and Processing, 2008, 92, 579-587.	2.3	77
215	Pulsed laser annealing of semiconductor structures for functional devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3264-3270.	0.8	12
216	Nanoscale Patterning and Electronics on Flexible Substrate by Direct Nanoimprinting of Metallic Nanoparticles. Advanced Materials, 2008, 20, 489-496.	21.0	174

#	Article	IF	CITATIONS
217	Laser induced plane acoustic wave generation, propagation, and interaction with rigid structures in water. Journal of Applied Physics, 2008, 104, 073104.	2.5	10
218	The Solid-State Neck Growth Mechanisms in Low Energy Laser Sintering of Gold Nanoparticles: A Molecular Dynamics Simulation Study. Journal of Heat Transfer, 2008, 130, .	2.1	93
219	Thermal sintering of solution-deposited nanoparticle silver ink films characterized by spectroscopic ellipsometry. Applied Physics Letters, 2008, 93, 234104.	3.3	41
220	Pulsed laser induced acoustic wave propagation and interaction in liquid: experiment and simulation. Proceedings of SPIE, 2008, , .	0.8	0
221	Nanomaterial enabled laser transfer for organic light emitting material direct writing. Applied Physics Letters, 2008, 93, .	3.3	42
222	ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process. Applied Physics Letters, 2008, 92, .	3.3	93
223	Laser micro/nanoprocessing for functional electronics. Proceedings of SPIE, 2008, , .	0.8	0
224	Low Temperature OFET (Organic Field Effect Transistor) Fabrication by Metal Nanoparticle Imprinting. , 2007, , 947.		0
225	Laser induced short plane acoustic wave focusing in water. Applied Physics Letters, 2007, 91, .	3.3	22
226	High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. Journal of Applied Physics, 2007, 102, .	2.5	57
227	Laser-assisted maskless fabrication of flexible electronics. , 2007, , .		0
228	Lithography-free high-resolution inkjet-printed OFET (organic field effect transistor) fabrication on polymer by laser processing. , 2007, , .		0
229	Patterning microconductor using nanosecond laser ablation of metal nanoparticle film. , 2007, , .		0
230	All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18, 345202.	2.6	646
231	Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Applied Physics Letters, 2007, 90, 141103.	3.3	182
232	The neck growth mechanisms in low energy laser sintering of gold nanoparticles: a molecular dynamics simulation study. , 2007, , .		1
233	Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication. Nano Letters, 2007, 7, 1869-1877.	9.1	297
234	Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sensors and Actuators A: Physical, 2007, 134, 161-168.	4.1	156

SEUNG HWAN KO

#	Article	IF	CITATIONS
235	The coalescence of supported gold nanoparticles induced by nanosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2007, 90, 247-253.	2.3	48
236	Nanosecond laser ablation of gold nanoparticle films. Applied Physics Letters, 2006, 89, 141126.	3.3	89
237	Fabrication of multilayer passive electric components using inkjet printing and low temperature laser processing on polymer. , 2006, , .		6
238	Air Stable High Resolution OFET (Organic Field Effect Transistor) Fabrication Using Inkjet Printing and Low Temperature Selective Laser Sintering Process. , 2006, , 201.		0
239	In situ crystal growth during explosive crystallization. , 2006, 6106, 252.		1
240	Explosive crystallization in the presence of melting. Physical Review B, 2006, 73, .	3.2	36
241	Laser based hybrid inkjet printing of nanoink for flexible electronics. , 2005, 5713, 97.		16
242	Subtractive Laser Processing of Low Temperature Inkjet Printed Micro Electric Components of Functional Nano-Ink for Flexible Electronics. , 2005, , 1935.		4
243	Fabrication of Inkjet Printed Flexible Electronics by Low Temperature Subtractive Laser Processing. , 2005, , 599.		2
244	Damage-Free Low Temperature Pulsed Laser Printing of Gold Nanoinks On Polymers. Journal of Heat Transfer, 2005, 127, 724-732.	2.1	64
245	In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Applied Physics A: Materials Science and Processing, 2004, 79, 1259-1261.	2.3	84
246	Conductor microstructures by laser curing of printed gold nanoparticle ink. Applied Physics Letters, 2004, 84, 801-803.	3.3	238