Xuelian Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5972972/publications.pdf

Version: 2024-02-01

31 papers 3,463 citations

257450 24 h-index 414414 32 g-index

34 all docs

34 docs citations

times ranked

34

2857 citing authors

#	Article	IF	CITATIONS
1	CRISPRâ€Cas9 mediated <i>OsMIR168a</i> knockout reveals its pleiotropy in rice. Plant Biotechnology Journal, 2022, 20, 310-322.	8.3	32
2	CRISPRâ€BETS: a baseâ€editing design tool for generating stop codons. Plant Biotechnology Journal, 2022, 20, 499-510.	8.3	21
3	Genomeâ€wide analyses of PAMâ€relaxed Cas9 genome editors reveal substantial offâ€target effects by ABE8e in rice. Plant Biotechnology Journal, 2022, 20, 1670-1682.	8.3	23
4	Improving a Quantitative Trait in Rice by Multigene Editing with CRISPR-Cas9. Methods in Molecular Biology, 2021, 2238, 205-219.	0.9	2
5	Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12, 1944.	12.8	79
6	Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnology Journal, 2021, 19, 2052-2068.	8.3	55
7	Exploring C-To-G Base Editing in Rice, Tomato, and Poplar. Frontiers in Genome Editing, 2021, 3, 756766.	5.2	32
8	PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants, 2021, 7, 25-33.	9.3	140
9	The Improvement of CRISPR-Cas9 System With Ubiquitin-Associated Domain Fusion for Efficient Plant Genome Editing. Frontiers in Plant Science, 2020, 11, 621.	3.6	12
10	CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6, 202-208.	9.3	116
11	Plant Prime Editors Enable Precise Gene Editing inÂRice Cells. Molecular Plant, 2020, 13, 667-670.	8.3	148
12	Knockout of the OsNAC006 Transcription Factor Causes Drought and Heat Sensitivity in Rice. International Journal of Molecular Sciences, 2020, 21, 2288.	4.1	69
13	Intron-Based Single Transcript Unit CRISPR Systems for Plant Genome Editing. Rice, 2020, 13, 8.	4.0	22
14	Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing. Frontiers in Plant Science, 2019, 10, 1173.	3.6	39
15	Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports, 2019, 38, 475-485.	5.6	136
16	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	8.3	120
17	Knocking Out MicroRNA Genes in Rice with CRISPR-Cas9. Methods in Molecular Biology, 2019, 1917, 109-119.	0.9	8
18	Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 2019, 17, 9.	3.8	172

#	Article	lF	CITATION
19	Plant Genome Editing Using FnCpf1 and LbCpf1 Nucleases at Redefined and Altered PAM Sites. Molecular Plant, 2018, 11, 999-1002.	8.3	136
20	MIGS as a Simple and Efficient Method for Gene Silencing in Rice. Frontiers in Plant Science, 2018, 9, 662.	3.6	13
21	A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology, 2018, 19, 84.	8.8	230
22	A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 2017, 3, 17018.	9.3	425
23	Modulating AtDREB1C Expression Improves Drought Tolerance in Salvia miltiorrhiza. Frontiers in Plant Science, 2017, 8, 52.	3.6	52
24	CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice. Frontiers in Plant Science, 2017, 8, 1598.	3.6	150
25	Construction of a Single Transcriptional Unit for Expression of Cas9 and Single-guide RNAs for Genome Editing in Plants. Bio-protocol, 2017, 7, e2546.	0.4	2
26	A Single Transcript CRISPR-Cas9 System for Efficient Genome Editing in Plants. Molecular Plant, 2016, 9, 1088-1091.	8.3	144
27	Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic <i>Salvia miltiorrhiza</i> . Plant and Cell Physiology, 2016, 57, 1593-1609.	3.1	77
28	Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiology and Biochemistry, 2016, 104, 17-28.	5.8	42
29	Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Reports, 2016, 35, 1545-1554.	5.6	74
30	A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiology, 2015, 169, 971-985.	4.8	532
31	Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Molecular Plant, 2013, 6,	8.3	245