
Junpei Takano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5972265/publications.pdf Version: 2024-02-01

Ιμναει Τλκλνιο

#	Article	IF	CITATIONS
1	Root response of soybean genotypes to low phosphorus availability from juvenile to adult vegetative stages. Soil Science and Plant Nutrition, 2022, 68, 361-373.	1.9	3
2	Involvement of boron transporter BOR1 in growth under low boron and high nitrate conditions in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2021, 171, 703-713.	5.2	2
3	GNOMâ€dependent endocytosis maintains polar localisation of the borate exporter BOR1 in Arabidopsis. Biology of the Cell, 2021, 113, 264-269.	2.0	6
4	Transport-coupled ubiquitination of the borate transporter BOR1 for its boron-dependent degradation. Plant Cell, 2021, 33, 420-438.	6.6	20
5	Analysis of and Intracellular Trafficking of Boric Acid/Borate Transport Proteins in Arabidopsis. Methods in Molecular Biology, 2020, 2177, 1-13.	0.9	5
6	Polar Localization of the Borate Exporter BOR1 Requires AP2-Dependent Endocytosis. Plant Physiology, 2019, 179, 1569-1580.	4.8	58
7	Nodulin Intrinsic Protein 7;1 Is a Tapetal Boric Acid Channel Involved in Pollen Cell Wall Formation. Plant Physiology, 2018, 178, 1269-1283.	4.8	39
8	TOL proteins mediate vacuolar sorting of the borate transporter BOR1 in <i>Arabidopsis thaliana</i> . Soil Science and Plant Nutrition, 2018, 64, 598-605.	1.9	17
9	Establishment of genetically encoded biosensors for cytosolic boric acid in plant cells. Plant Journal, 2018, 95, 763-774.	5.7	13
10	Boron-Dependent Translational Suppression of the Borate Exporter <i>BOR1</i> Contributes to the Avoidance of Boron Toxicity. Plant Physiology, 2018, 177, 759-774.	4.8	48
11	Boron Uptake Assay in Xenopus laevis Oocytes. Bio-protocol, 2018, 8, e2755.	0.4	0
12	Plant Aquaporin Trafficking. Signaling and Communication in Plants, 2017, , 47-81.	0.7	10
13	Polar Localization of the NIP5;1 Boric Acid Channel Is Maintained by Endocytosis and Facilitates Boron Transport in Arabidopsis Roots. Plant Cell, 2017, 29, 824-842.	6.6	107
14	Insights into the Mechanisms Underlying Boron Homeostasis in Plants. Frontiers in Plant Science, 2017, 8, 1951.	3.6	133
15	Tolerance to Excess-Boron Conditions Acquired by Stabilization of a BOR1 Variant with Weak Polarity in Arabidopsis. Frontiers in Cell and Developmental Biology, 2016, 4, 4.	3.7	22
16	DRP1-Dependent Endocytosis is Essential for Polar Localization and Boron-Induced Degradation of the Borate Transporter BOR1 in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2016, 57, 1985-2000.	3.1	66
17	Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell, 2016, 164, 447-459.	28.9	414
18	Evolutionary Divergence of Plant Borate Exporters and Critical Amino Acid Residues for the Polar Localization and Boron-Dependent Vacuolar Sorting of AtBOR1. Plant and Cell Physiology, 2015, 56, 852-862.	3.1	40

Junpei Takano

#	Article	IF	CITATIONS
19	UDP-d-galactose synthesis by UDP-glucose 4-epimerase 4 is required for organization of the trans-Golgi network/early endosome in Arabidopsis thaliana root epidermal cells. Journal of Plant Research, 2015, 128, 863-873.	2.4	12
20	A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. ELife, 2014, 3, e03115.	6.0	203
21	Analysis of Endocytosis and Ubiquitination of the BOR1 Transporter. Methods in Molecular Biology, 2014, 1209, 203-217.	0.9	5
22	Difference in cesium accumulation among rice cultivars grown in the paddy field in Fukushima Prefecture in 2011 and 2012. Journal of Plant Research, 2014, 127, 57-66.	2.4	34
23	Identification and Characterization of an Arabidopsis Mutant with Altered Localization of NIP5;1, a Plasma Membrane Boric Acid Channel, Reveals the Requirement for d-Galactose in Endomembrane Organization. Plant and Cell Physiology, 2014, 55, 704-714.	3.1	20
24	<scp>O</scp> s <scp>NIP</scp> 3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boronâ€deficient conditions. Plant Journal, 2014, 78, 890-902.	5.7	95
25	Improved tolerance to boron deficiency by enhanced expression of the boron transporter BOR2. Soil Science and Plant Nutrition, 2014, 60, 341-348.	1.9	17
26	Roles of BOR2, a Boron Exporter, in Cross Linking of Rhamnogalacturonan II and Root Elongation under Boron Limitation in Arabidopsis. Plant Physiology, 2013, 163, 1699-1709.	4.8	117
27	Differential Expression of Three BOR1 Genes Corresponding to Different Genomes in Response to Boron Conditions in Hexaploid Wheat (Triticum aestivum L.). Plant and Cell Physiology, 2013, 54, 1056-1063.	3.1	48
28	Polar localization and endocytic degradation of a boron transporter, BOR1, is dependent on specific tyrosine residues. Plant Signaling and Behavior, 2012, 7, 46-49.	2.4	21
29	Title is missing!. Kagaku To Seibutsu, 2011, 49, 440-442.	0.0	0
30	High Boron-induced Ubiquitination Regulates Vacuolar Sorting of the BOR1 Borate Transporter in Arabidopsis thaliana. Journal of Biological Chemistry, 2011, 286, 6175-6183.	3.4	169
31	Boron-Dependent Degradation of <i>NIP5;1</i> mRNA for Acclimation to Excess Boron Conditions in <i>Arabidopsis</i> Ä. Plant Cell, 2011, 23, 3547-3559.	6.6	102
32	Endocytic and Secretory Traffic in <i>Arabidopsis</i> Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. Plant Cell, 2010, 22, 1344-1357.	6.6	435
33	Polar localization and degradation of <i>Arabidopsis</i> boron transporters through distinct trafficking pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5220-5225.	7.1	315
34	Highly Boron Deficiency-Tolerant Plants Generated by Enhanced Expression of NIP5;1, a Boric Acid Channel. Plant and Cell Physiology, 2009, 50, 58-66.	3.1	102
35	Boron transport mechanisms: collaboration of channels and transporters. Trends in Plant Science, 2008, 13, 451-457.	8.8	227
36	NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 2860-2875.	6.6	277

Junpei Takano

#	Article	IF	CITATIONS
37	An <i>Arabidopsis thaliana</i> high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18807-18812.	7.1	236
38	Plants Tolerant of High Boron Levels. Science, 2007, 318, 1417-1417.	12.6	256
39	Saccharomyces cerevisiaeBor1p is a boron exporter and a key determinant of boron tolerance. FEMS Microbiology Letters, 2007, 267, 230-235.	1.8	60
40	Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance inSaccharomyces cerevisiae. FEMS Microbiology Letters, 2006, 262, 216-222.	1.8	95
41	Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, inArabidopsis thaliana. Plant Journal, 2006, 46, 1084-1091.	5.7	118
42	The Arabidopsis Major Intrinsic Protein NIP5;1 Is Essential for Efficient Boron Uptake and Plant Development under Boron Limitation. Plant Cell, 2006, 18, 1498-1509.	6.6	619
43	Cloning of cDNAs Encoding Isopropylmalate Dehydrogenase fromArabidopsis thalianaand Accumulation Patterns of Their Transcripts. Bioscience, Biotechnology and Biochemistry, 2005, 69, 806-810.	1.3	13
44	Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12276-12281.	7.1	378
45	Arabidopsis boron transporter for xylem loading. Nature, 2002, 420, 337-340.	27.8	582
46	Preferential translocation of boron to young leaves in <i>Arabidopsis thaliana</i> Regulated by the <i>BOR1</i> Gene. Soil Science and Plant Nutrition, 2001, 47, 345-357.	1.9	87