Mario Jug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5972097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plants from Urban Parks as Valuable Cosmetic Ingredients: Green Extraction, Chemical Composition and Activity. Agronomy, 2022, 12, 204.	3.0	11
2	Cyclodextrin-based Pickering emulsions: functional properties and drug delivery applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 31-50.	1.6	15
3	Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. International Journal of Molecular Sciences, 2021, 22, 9664.	4.1	18
4	Investigation of Praziquantel/Cyclodextrin Inclusion Complexation by NMR and LC-HRMS/MS: Mechanism, Solubility, Chemical Stability, and Degradation Products. Molecular Pharmaceutics, 2021, 18, 4210-4223.	4.6	10
5	Development, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres. European Journal of Pharmaceutical Sciences, 2020, 141, 105115.	4.0	24
6	Comparison of Maceration and Ultrasonication for Green Extraction of Phenolic Acids from Echinacea purpurea Aerial Parts. Molecules, 2020, 25, 5142.	3.8	16
7	Co-grinding with surfactants as a new approach to enhance in vitro dissolution of praziquantel. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113494.	2.8	6
8	Cyclodextrin-based drug delivery systems. , 2020, , 29-69.		3
9	Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. International Journal of Pharmaceutics, 2019, 563, 249-258.	5.2	51
10	Optimization of Ultrasound-Assisted Extraction of Phenolic Antioxidants from Lotus corniculatus. Croatica Chemica Acta, 2019, 92, 369-377.	0.4	6
11	Glycerol extracts of Glycyrrhiza glabra, Echinacea purpurea, Silybum marianum and Berberis vulgaris: chemical characterisation and cosmeceutical potential. , 2019, 85, .		0
12	Characterization of olive pomace extract obtained by cyclodextrin-enhanced pulsed ultrasound assisted extraction. LWT - Food Science and Technology, 2018, 92, 22-31.	5.2	50
13	Characterization and microbiological evaluation of chitosan-alginate microspheres for cefixime vaginal administration. Carbohydrate Polymers, 2018, 192, 176-183.	10.2	32
14	An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 350-366.	2.8	65
15	Cyclodextrin encapsulation of daidzein and genistein by grinding: implication on the glycosaminoglycan accumulation in mucopolysaccharidosis type II and III fibroblasts. Journal of Microencapsulation, 2018, 35, 1-12.	2.8	20
16	Development of cyclodextrin-based extract of Lotus corniculatus as a potential substrate reduction therapy in mucopolysaccharidoses type III. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 369-379.	1.6	3
17	Grinding as Solvent-Free Green Chemistry Approach for Cyclodextrin Inclusion Complex Preparation in the Solid State. Pharmaceutics, 2018, 10, 189.	4.5	56
18	Valorization of Olive Pomace-Based Nutraceuticals as Antioxidants in Chemical, Food, and Biological Models. Molecules, 2018, 23, 2070.	3.8	33

Mario Jug

#	Article	IF	CITATIONS
19	Therapeutic Potential of Hydroxypropyl-β-Cyclodextrin-Based Extract of Medicago sativa in the Treatment of Mucopolysaccharidoses. Planta Medica, 2017, 83, 40-50.	1.3	11
20	Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. Journal of Pharmaceutical and Biomedical Analysis, 2017, 137, 42-53.	2.8	50
21	Membrane of Candida albicans as a target of berberine. BMC Complementary and Alternative Medicine, 2017, 17, 268.	3.7	58
22	In vitro dissolution/release methods for mucosal delivery systems. ADMET and DMPK, 2017, 5, 173.	2.1	7
23	The Influence of Extraction Parameters on Antimicrobial Activity of Propolis Extracts. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	7
24	Multi-response Optimization of Ultrasound-assisted Extraction of Bioactive Components from Medicago Sativa L Croatica Chemica Acta, 2017, 90, .	0.4	4
25	Optimization of ultrasonication assisted extraction of bioactive components from Medicago sativa: Influence of extraction solvent, temperature and pH. Planta Medica, 2016, 81, S1-S381.	1.3	0
26	Amidated pectin-based wafers for econazole buccal delivery: Formulation optimization and antimicrobial efficacy estimation. Carbohydrate Polymers, 2015, 121, 231-240.	10.2	35
27	Development of Eudragit® S100 based pH-responsive microspheres of zaleplon by spray-drying: Tailoring the drug release properties. Powder Technology, 2015, 283, 334-343.	4.2	9
28	Comparative analysis of binary and ternary cyclodextrin complexes with econazole nitrate in solution and in solid state. Journal of Pharmaceutical and Biomedical Analysis, 2014, 91, 81-91.	2.8	44
29	Modulation of antioxidant, chelating and antimicrobial activity of poplar chemo-type propolis by extraction procures. LWT - Food Science and Technology, 2014, 57, 530-537.	5.2	53
30	Thermodynamic study of inclusion complexes of zaleplon with natural and modified cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 79, 391-400.	1.6	3
31	Zaleplon co-ground complexes with natural and polymeric Î ² -cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76, 353-362.	1.6	6
32	Native and polymeric β-cyclodextrins in performance improvement of chitosan films aimed for buccal delivery of poorly soluble drugs. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 87-97.	1.6	21
33	Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state. Journal of Pharmaceutical and Biomedical Analysis, 2012, 71, 35-44.	2.8	19
34	Development of low methoxy amidated pectin-based mucoadhesive patches for buccal delivery of triclosan: Effect of cyclodextrin complexation. Carbohydrate Polymers, 2012, 90, 1794-1803.	10.2	30
35	Analysis of triclosan inclusion complexes with β-cyclodextrin and its water-soluble polymeric derivative. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 1030-1039.	2.8	73
36	Antioxidant and Bioadhesive Properties of Onions (<i>Allium</i> L., Alliaceae) Processed Under Acidic Conditions. International Journal of Food Properties, 2011, 14, 92-101.	3.0	8

Mario Jug

#	Article	IF	CITATIONS
37	Stability and Structure of Inclusion Complexes of Zaleplon with Natural and Modified Cyclodextrins. Croatica Chemica Acta, 2011, 84, 169-178.	0.4	12
38	Preparation and solid-state characterization of bupivacaine hydrochloride cyclodextrin complexes aimed for buccal delivery. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 9-18.	2.8	60
39	Phase solubility, 1H NMR and molecular modelling studies of bupivacaine hydrochloride complexation with different cyclodextrin derivates. Chemical Physics Letters, 2010, 500, 347-354.	2.6	21
40	The pH-dependent complexation between risperidone and hydroxypropyl-β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 163-171.	1.6	13
41	Novel cyclodextrin-based film formulation intended for buccal delivery of atenolol. Drug Development and Industrial Pharmacy, 2009, 35, 796-807.	2.0	30
42	Development of a Cyclodextrin-Based Nasal Delivery System for Lorazepam. Drug Development and Industrial Pharmacy, 2008, 34, 817-826.	2.0	26
43	Mucoadhesive and antioxidant activity of low-thiosulfinate Allium extracts. Planta Medica, 2008, 74, .	1.3	0
44	Screening of Mucoadhesive Microparticles Containing Hydroxypropyl- Beta-Cyclodextrin for the Nasal Delivery of Risperidone. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 358-367.	1.1	10
45	Cytoprotectivity of plant extracts on doxorubicin and irinotecan-treated human peripheral blood lymphocytes. Planta Medica, 2007, 73, .	1.3	2
46	Influence of cyclodextrin complexation on piroxicam gel formulations. Acta Pharmaceutica, 2005, 55, 223-36.	2.0	14
47	Multicomponent Complexes of Piroxicam with Cyclodextrins and Hydroxypropyl Methylcellulose. Drug Development and Industrial Pharmacy, 2004, 30, 1051-1060. 	2.0	23
48	Influence of hydroxypropyl-Î ² -cyclodextrin complexation on piroxicam release from buccoadhesive tablets. European Journal of Pharmaceutical Sciences, 2004, 21, 251-260.	4.0	91