Srdjan Ostojic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5971648/publications.pdf

Version: 2024-02-01

361413 395702 2,015 39 20 33 citations h-index g-index papers 53 53 53 1778 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of population structure in computations through neural dynamics. Nature Neuroscience, 2022, 25, 783-794.	14.8	76
2	Network dynamics underlying OFF responses in the auditory cortex. ELife, 2021, 10, .	6.0	17
3	Shaping Dynamics With Multiple Populations in Low-Rank Recurrent Networks. Neural Computation, 2021, 33, 1572-1615.	2.2	39
4	Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Current Opinion in Neurobiology, 2021, 70, 113-120.	4.2	86
5	Curating more diverse scientific conferences. Nature Reviews Neuroscience, 2020, 21, 589-590.	10.2	3
6	Coding with transient trajectories in recurrent neural networks. PLoS Computational Biology, 2020, 16, e1007655.	3.2	32
7	Dynamics of random recurrent networks with correlated low-rank structure. Physical Review Research, 2020, 2, .	3.6	54
8	Temporal chunking as a mechanism for unsupervised learning of task-sets. ELife, 2020, 9, .	6.0	14
9	Coding with transient trajectories in recurrent neural networks. , 2020, 16, e1007655.		0
10	Coding with transient trajectories in recurrent neural networks. , 2020, 16, e1007655.		0
11	Coding with transient trajectories in recurrent neural networks. , 2020, 16, e1007655.		0
12	Coding with transient trajectories in recurrent neural networks. , 2020, 16, e1007655.		0
13	Coding with transient trajectories in recurrent neural networks. , 2020, 16, e1007655.		0
14	Coding with transient trajectories in recurrent neural networks. , 2020, 16, e1007655.		0
15	Inferring and validating mechanistic models of neural microcircuits based on spike-train data. Nature Communications, 2019, 10, 4933.	12.8	30
16	Dissociating task acquisition from expression during learning reveals latent knowledge. Nature Communications, 2019, 10, 2151.	12.8	20
17	A Geometrical Analysis of Global Stability in Trained Feedback Networks. Neural Computation, 2019, 31, 1139-1182.	2.2	11
18	Resting-State Neural Firing Rate Is Linked to Cardiac-Cycle Duration in the Human Cingulate and Parahippocampal Cortices. Journal of Neuroscience, 2019, 39, 3676-3686.	3.6	25

#	Article	IF	Citations
19	Contrasting the effects of adaptation and synaptic filtering on the timescales of dynamics in recurrent networks. PLoS Computational Biology, 2019, 15, e1006893.	3.2	21
20	Go/No-Go task engagement enhances population representation of target stimuli in primary auditory cortex. Nature Communications, 2018, 9, 2529.	12.8	59
21	Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks. Physical Review E, 2018, 97, 062314.	2.1	41
22	Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks. Neuron, 2018, 99, 609-623.e29.	8.1	218
23	More than the Sum of its Parts: Perception and Neuronal Underpinnings of Sequence Processing. Neuroscience, 2018, 389, 1-3.	2.3	3
24	Intrinsically-generated fluctuating activity in excitatory-inhibitory networks. PLoS Computational Biology, 2017, 13, e1005498.	3.2	51
25	Instability to a heterogeneous oscillatory state in randomly connected recurrent networks with delayed interactions. Physical Review E, 2016, 94, 062207.	2.1	7
26	Timeâ€invariant feedâ€forward inhibition of Purkinje cells in the cerebellar cortex <i>in vivo</i> . Journal of Physiology, 2016, 594, 2729-2749.	2.9	24
27	Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate. Journal of Neuroscience, 2016, 36, 11238-11258.	3.6	46
28	Neuronal Morphology Generates High-Frequency Firing Resonance. Journal of Neuroscience, 2015, 35, 7056-7068.	3.6	55
29	Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nature Neuroscience, 2014, 17, 594-600.	14.8	260
30	A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks. PLoS Computational Biology, 2013, 9, e1003301.	3.2	52
31	Synaptic encoding of temporal contiguity. Frontiers in Computational Neuroscience, 2013, 7, 32.	2.1	12
32	Interspike interval distributions of spiking neurons driven by fluctuating inputs. Journal of Neurophysiology, 2011, 106, 361-373.	1.8	63
33	From Spiking Neuron Models to Linear-Nonlinear Models. PLoS Computational Biology, 2011, 7, e1001056.	3.2	184
34	How Connectivity, Background Activity, and Synaptic Properties Shape the Cross-Correlation between Spike Trains. Journal of Neuroscience, 2009, 29, 10234-10253.	3.6	191
35	Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. Journal of Computational Neuroscience, 2009, 26, 369-392.	1.0	96
36	Elasticity from the Force Network Ensemble in Granular Media. Physical Review Letters, 2006, 97, 208001.	7.8	28

SRDJAN OSTOJIC

#	Article	IF	CITATIONS
37	Scale invariance and universality of force networks in static granular matter. Nature, 2006, 439, 828-830.	27.8	124
38	Response of a hexagonal granular packing under a localized external force: exact results. Journal of Statistical Mechanics: Theory and Experiment, 2005, 2005, P01011.	2.3	4
39	Patterns formed by addition of grains to only one site of an abelian sandpile. Physica A: Statistical Mechanics and Its Applications, 2003, 318, 187-199.	2.6	33