
Marcus MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5971571/publications.pdf Version: 2024-02-01

ΜΑΡΟΊΟς ΜΑΊ/ΙΙΕΡ

#	Article	IF	CITATIONS
1	Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9, 101-113.	27.5	5,007
2	Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures. Science, 2005, 308, 1442-1446.	12.6	912
3	Two-Level Structured Self-Adaptive Surfaces with Reversibly Tunable Properties. Journal of the American Chemical Society, 2003, 125, 3896-3900.	13.7	478
4	Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries. ACS Nano, 2007, 1, 168-175.	14.6	424
5	Biological and synthetic membranes: What can be learned from a coarse-grained description?. Physics Reports, 2006, 434, 113-176.	25.6	279
6	Calculation of free energy through successive umbrella sampling. Journal of Chemical Physics, 2004, 120, 10925-10930.	3.0	251
7	Single chain in mean field simulations: Quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations. Journal of Chemical Physics, 2006, 125, 184904.	3.0	211
8	Lateral versus Perpendicular Segregation in Mixed Polymer Brushes. Physical Review Letters, 2002, 88, 035502.	7.8	198
9	Monte Carlo Simulations of a Coarse Grain Model for Block Copolymers and Nanocomposites. Macromolecules, 2008, 41, 4989-5001.	4.8	198
10	Topological effects in ring polymers: A computer simulation study. Physical Review E, 1996, 53, 5063-5074.	2.1	189
11	Symmetric diblock copolymers in thin films. I. Phase stability in self-consistent field calculations and Monte Carlo simulations. Journal of Chemical Physics, 1999, 111, 5241-5250.	3.0	177
12	Monte Carlo Simulation of Long Chain Polymer Melts:Â Crossover from Rouse to Reptation Dynamics. Macromolecules, 2001, 34, 1105-1117.	4.8	166
13	Field Theoretic Study of Bilayer Membrane Fusion. I. Hemifusion Mechanism. Biophysical Journal, 2004, 87, 3277-3290.	O.5	154
14	The evaporation/condensation transition of liquid droplets. Journal of Chemical Physics, 2004, 120, 5293-5308.	3.0	153
15	Monte Carlo Studies of Wetting, Interface Localization and Capillary Condensation. Journal of Statistical Physics, 2003, 110, 1411-1514.	1.2	147
16	Rapid Directed Assembly of Block Copolymer Films at Elevated Temperatures. Macromolecules, 2008, 41, 2759-2761.	4.8	145
17	A New Mechanism of Model Membrane Fusion Determined from Monte Carlo Simulation. Biophysical Journal, 2003, 85, 1611-1623.	0.5	143
18	Phase separation in binary mixtures containing polymers: A quantitative comparison of single-chain-in-mean-field simulations and computer simulations of the corresponding multichain systems. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 934-958.	2.1	142

#	Article	IF	CITATIONS
19	Dimensions and Shapes of Block Copolymer Domains Assembled on Lithographically Defined Chemically Patterned Substrates. Macromolecules, 2007, 40, 90-96.	4.8	137
20	Interface and Surface Properties of Short Polymers in Solution:Â Monte Carlo Simulations and Self-Consistent Field Theory. Macromolecules, 2000, 33, 3902-3923.	4.8	136
21	Morphology of multi-component polymer systems: single chain in mean field simulation studies. Soft Matter, 2006, 2, 573-583.	2.7	134
22	Avoiding boundary effects in Wang-Landau sampling. Physical Review E, 2003, 67, 067102.	2.1	133
23	Phase diagram of a mixed polymer brush. Physical Review E, 2002, 65, 030802.	2.1	130
24	Anomalous size-dependence of interfacial profiles between coexisting phases of polymer mixtures in thin-film geometry: A Monte Carlo simulation. Journal of Chemical Physics, 1997, 107, 8175-8188.	3.0	129
25	Incorporating Fluctuations and Dynamics in Self-Consistent Field Theories for Polymer Blends. , 0, , 1-58.		126
26	Hierarchical Assembly of Nanoparticle Superstructures from Block Copolymer-Nanoparticle Composites. Physical Review Letters, 2008, 100, 148303.	7.8	126
27	MonteÂCarlo Simulation of Coarse Grain Polymeric Systems. Physical Review Letters, 2009, 102, 197801.	7.8	126
28	Long Range Bond-Bond Correlations in Dense Polymer Solutions. Physical Review Letters, 2004, 93, 147801.	7.8	122
29	Static and dynamic properties of the interface between a polymer brush and a melt of identical chains. Journal of Chemical Physics, 2006, 124, 064902.	3.0	122
30	Directed self-assembly of block copolymers by chemical or topographical guiding patterns: Optimizing molecular architecture, thin-film properties, and kinetics. Progress in Polymer Science, 2016, 54-55, 47-75.	24.7	122
31	Chain length dependence of the polymer–solvent critical point parameters. Journal of Chemical Physics, 1996, 105, 802-809.	3.0	114
32	Defects in the Self-Assembly of Block Copolymers and Their Relevance for Directed Self-Assembly. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 187-216.	6.8	114
33	Theoretically informed coarse grain simulations of polymeric systems. Journal of Chemical Physics, 2009, 131, 084903.	3.0	113
34	Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models. Journal of Statistical Physics, 2011, 145, 967-1016.	1.2	113
35	Fabrication of Complex Three-Dimensional Nanostructures from Self-Assembling Block Copolymer Materials on Two-Dimensional Chemically Patterned Templates with Mismatched Symmetry. Physical Review Letters, 2006, 96, 036104.	7.8	110
36	Free Energy of Defects in Ordered Assemblies of Block Copolymer Domains. ACS Macro Letters, 2012, 1, 418-422.	4.8	107

MARCUS MÃ¹/4LLER

#	Article	IF	CITATIONS
37	Bulk and interfacial thermodynamics of a symmetric, ternary homopolymer–copolymer mixture: A Monte Carlo study. Journal of Chemical Physics, 1996, 105, 8885-8901.	3.0	106
38	Topological effects in ring polymers. II. Influence of persistence length. Physical Review E, 2000, 61, 4078-4089.	2.1	105
39	Processing Pathways Decide Polymer Properties at the Molecular Level. Macromolecules, 2019, 52, 7146-7156.	4.8	105
40	Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study. Macromolecular Theory and Simulations, 1999, 8, 343-374.	1.4	104
41	Comparison of dissipative particle dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems. Physical Review E, 2007, 76, 026706.	2.1	104
42	"Intrinsic―profiles and capillary waves at homopolymer interfaces: A Monte Carlo study. Physical Review E, 1999, 59, 728-738.	2.1	103
43	Translationally Invariant Slip-Spring Model for Entangled Polymer Dynamics. Physical Review Letters, 2012, 109, 148302.	7.8	102
44	Structural and thermodynamic properties of interfaces between coexisting phases in polymer blends: a Monte Carlo simulation. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2369-2379.	1.7	100
45	Short chains at surfaces and interfaces: A quantitative comparison between density-functional theories and Monte Carlo simulations. Journal of Chemical Physics, 2003, 118, 2929.	3.0	99
46	Molecular pathways for defect annihilation in directed self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14144-14149.	7.1	98
47	Defect Removal in the Course of Directed Self-Assembly is Facilitated in the Vicinity of the Order-Disorder Transition. Physical Review Letters, 2014, 113, 168301.	7.8	97
48	Field Theoretic Study of Bilayer Membrane Fusion: II. Mechanism of a Stalk-Hole Complex. Biophysical Journal, 2006, 90, 915-926.	0.5	96
49	Static properties of end-tethered polymers in good solution: A comparison between different models. Journal of Chemical Physics, 2004, 120, 4012-4023.	3.0	95
50	Accurate measurements of the chemical potential of polymeric systems by Monte Carlo simulation. Journal of Chemical Physics, 1994, 101, 4324-4330.	3.0	93
51	A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature, 2015, 524, 109-113.	27.8	91
52	Ordered Phases in Rodâ^'Coil Diblock Copolymers. Macromolecules, 1996, 29, 8900-8903.	4.8	90
53	Phase behavior of n-alkanes in supercritical solution: A Monte Carlo study. Journal of Chemical Physics, 2004, 121, 2169-2179.	3.0	89
54	Mechanism and kinetics of ordering in diblock copolymer thin films on chemically nanopatterned substrates. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3444-3459.	2.1	89

#	Article	IF	CITATIONS
55	Calculating the free energy of self-assembled structures by thermodynamic integration. Journal of Chemical Physics, 2008, 128, 024903.	3.0	87
56	Symmetric diblock copolymers in thin films. II. Comparison of profiles between self-consistent field calculations and Monte Carlo simulations. Journal of Chemical Physics, 1999, 111, 5251-5258.	3.0	86
57	Spinodal decomposition in a binary polymer mixture: Dynamic self-consistent-field theory and Monte Carlo simulations. Physical Review E, 2001, 64, 041804.	2.1	85
58	New mechanism of membrane fusion. Journal of Chemical Physics, 2002, 116, 2342-2345.	3.0	84
59	Bidisperse Mixed Brushes:Â Synthesis and Study of Segregation in Selective Solvent. Macromolecules, 2003, 36, 7268-7279.	4.8	84
60	Monte Carlo simulation of block copolymers. Current Opinion in Colloid and Interface Science, 2000, 5, 314-322.	7.4	83
61	Wetting and Capillary Condensation in Symmetric Polymer Blends:Â A Comparison between Monte Carlo Simulations and Self-Consistent Field Calculations. Macromolecules, 1998, 31, 8323-8346.	4.8	81
62	Remediation of Line Edge Roughness in Chemical Nanopatterns by the Directed Assembly of Overlying Block Copolymer Films. Macromolecules, 2010, 43, 2334-2342.	4.8	81
63	Adsorption Transition of a Polymer Chain at a Weakly Attractive Surface: Monte Carlo Simulation of Off-Lattice Models. Macromolecular Theory and Simulations, 2002, 11, 985-995.	1.4	79
64	Simulation of Defect Reduction in Block Copolymer Thin Films by Solvent Annealing. ACS Macro Letters, 2015, 4, 11-15.	4.8	79
65	Measuring the chemical potential of polymer solutions and melts in computer simulations. Journal of Chemical Physics, 1994, 100, 719-724.	3.0	78
66	Quantitative Comparison of Self-Consistent Field Theories for Polymers near Interfaces with Monte Carlo Simulations. Macromolecules, 1995, 28, 8639-8645.	4.8	78
67	Microphase Separation of Mixed Polymer Brushes: Dependence of the Morphology on Grafting Density, Composition, Chain-Length Asymmetry, Solvent Quality, and Selectivity. Journal of Physical Chemistry B, 2009, 113, 11384-11402.	2.6	78
68	Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim's thermodynamic perturbation theory and computer simulations. Journal of Chemical Physics, 2000, 113, 419-433.	3.0	76
69	Computational Approaches for the Dynamics of Structure Formation in Self-Assembling Polymeric Materials. Annual Review of Materials Research, 2013, 43, 1-34.	9.3	75
70	Coarse-grained models and collective phenomena in membranes: Computer simulation of membrane fusion. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1441-1450.	2.1	72
71	Nano-dewetting: Interplay between van der Waals- and short-ranged interactions. Journal of Chemical Physics, 2001, 115, 9960-9969.	3.0	71
72	Directed Copolymer Assembly on Chemical Substrate Patterns:  A Phenomenological and Single-Chain-in-Mean-Field Simulations Study of the Influence of Roughness in the Substrate Pattern. Langmuir, 2008, 24, 1284-1295.	3.5	70

#	Article	IF	CITATIONS
73	Synthetic Hydrophilic Materials with Tunable Strength and a Range of Hydrophobic Interactions. Advanced Functional Materials, 2010, 20, 2240-2247.	14.9	69
74	Intra- and Interchain Correlations in Semidilute Polymer Solutions:  Monte Carlo Simulations and Renormalization Group Results. Macromolecules, 2000, 33, 4568-4580.	4.8	67
75	Single-chain dynamics in a homogeneous melt and a lamellar microphase: A comparison between Smart Monte Carlo dynamics, slithering-snake dynamics, and slip-link dynamics. Journal of Chemical Physics, 2008, 129, 164906.	3.0	67
76	Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2571-2576.	7.1	65
77	Structure and nucleation of pores in polymeric bilayers: A Monte Carlo simulation. Journal of Chemical Physics, 1996, 105, 8282-8292.	3.0	64
78	Memory of Surface Patterns in Mixed Polymer Brushes:  Simulation and Experiment. Langmuir, 2007, 23, 279-285.	3.5	64
79	Interface properties and bubble nucleation in compressible mixtures containing polymers. Journal of Chemical Physics, 2002, 117, 5480-5496.	3.0	63
80	Interface Localization-Delocalization in a Double Wedge: A New Universality Class with Strong Fluctuations and Anisotropic Scaling. Physical Review Letters, 2003, 90, 136101.	7.8	63
81	Main phase transition in lipid bilayers: Phase coexistence and line tension in a soft, solvent-free, coarse-grained model. Journal of Chemical Physics, 2010, 132, 155104.	3.0	63
82	Nonequilibrium Processes in Polymer Membrane Formation: Theory and Experiment. Chemical Reviews, 2021, 121, 14189-14231.	47.7	63
83	Line-Tension Controlled Mechanism for Influenza Fusion. PLoS ONE, 2012, 7, e38302.	2.5	63
84	Chain conformations and correlations in thin polymer films: A Monte Carlo study. Journal of Chemical Physics, 2002, 116, 9930-9938.	3.0	60
85	Adsorption of polymers on a brush: Tuning the order of the wetting phase transition. Journal of Chemical Physics, 2006, 124, 084907.	3.0	60
86	Dynamical Simulations of Coarse Grain Polymeric Systems: Rouse and Entangled Dynamics. Macromolecules, 2013, 46, 6287-6299.	4.8	59
87	FLAT HISTOGRAM METHOD OF WANG–LANDAU AND N-FOLD WAY. International Journal of Modern Physics C, 2002, 13, 477-494.	1.7	58
88	How does the pattern of grafting points influence the structure of one-component and mixed polymer brushes?. Europhysics Letters, 2005, 71, 639-645.	2.0	57
89	Artificial multiple criticality and phase equilibria: an investigation of the PC-SAFT approach. Physical Chemistry Chemical Physics, 2005, 7, 3728.	2.8	55
90	Wetting of polymer liquids: Monte Carlo simulations and self-consistent field calculations. Journal of Physics Condensed Matter, 2003, 15, R609-R653.	1.8	54

#	Article	IF	CITATIONS
91	Surface excess in dilute polymer solutions and the adsorption transition versus wetting phenomena. Journal of Chemical Physics, 2003, 118, 8489-8499.	3.0	53
92	Simulations of theoretically informed coarse grain models of polymeric systems. Faraday Discussions, 2010, 144, 111-125.	3.2	53
93	Process-directed self-assembly of copolymers: Results of and challenges for simulation studies. Progress in Polymer Science, 2020, 101, 101198.	24.7	53
94	Single chain structure in thin polymer films: corrections to Flory's and Silberberg's hypotheses. Journal of Physics Condensed Matter, 2005, 17, S1697-S1709.	1.8	52
95	Concentration and energy fluctuations in a critical polymer mixture. Physical Review E, 1995, 51, 2079-2089.	2.1	51
96	Microphase Separation of Diblock Copolymer Brushes in Selective Solvents: Single-Chain-in-Mean-Field Simulations and Integral Geometry Analysis. Macromolecules, 2009, 42, 2251-2264.	4.8	51
97	Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment. Journal of Chemical Physics, 2009, 130, 044101.	3.0	51
98	Diblock Copolymers at a Homopolymerâ^'Homopolymer Interface:  A Monte Carlo Simulation. Macromolecules, 1996, 29, 8241-8248.	4.8	50
99	On two intrinsic length scales in polymer physics: Topological constraints vs. entanglement length. Europhysics Letters, 2000, 52, 406-412.	2.0	50
100	Dense orientationally ordered states of a single semiflexible macromolecule: An expanded ensemble Monte Carlo simulation. Journal of Chemical Physics, 2005, 122, 174907.	3.0	50
101	A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach. Journal of Chemical Physics, 2005, 123, 014908.	3.0	50
102	Directed Assembly of Non-equilibrium ABA Triblock Copolymer Morphologies on Nanopatterned Substrates. ACS Nano, 2012, 6, 5440-5448.	14.6	50
103	Mechanics of membrane fusion/pore formation. Chemistry and Physics of Lipids, 2015, 185, 109-128.	3.2	50
104	Formation of Micelles in Homopolymer-Copolymer Mixtures:  Quantitative Comparison between Simulations of Long Chains and Self-Consistent Field Calculations. Macromolecules, 2006, 39, 9539-9550.	4.8	49
105	Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: The case of carbon dioxide. Journal of Chemical Physics, 2008, 128, 104501.	3.0	49
106	COMPUTER SIMULATION OF PROFILES OF INTERFACES BETWEEN COEXISTING PHASES: DO WE UNDERSTAND THEIR FINITE SIZE EFFECTS?. International Journal of Modern Physics C, 2000, 11, 1093-1113.	1.7	48
107	Symmetric polymer blend confined into a film with antisymmetric surfaces: Interplay between wetting behavior and the phase diagram. Physical Review E, 2000, 62, 5281-5295.	2.1	48
108	Poling dynamics of lithium niobate crystals. Applied Physics B: Lasers and Optics, 2003, 76, 393-396.	2.2	47

Marcus Müller

#	Article	IF	CITATIONS
109	Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields. Physical Review E, 2003, 68, 031601.	2.1	47
110	Phase Diagram of Random Copolymer Melts:Â A Computer Simulation Study. Macromolecules, 2004, 37, 4283-4295.	4.8	47
111	Transition Path from Two Apposed Membranes to a Stalk Obtained by a Combination of Particle Simulations and String Method. Physical Review Letters, 2012, 108, 228103.	7.8	47
112	Metastable Prepores in Tension-Free Lipid Bilayers. Physical Review Letters, 2018, 120, 128103.	7.8	47
113	Liquid–vapor asymmetry in pure fluids: A Monte Carlo simulation study. Journal of Chemical Physics, 1995, 102, 2562-2573.	3.0	46
114	Cyclic motion and inversion of surface flow direction in a dense polymer brush under shear. Europhysics Letters, 2008, 81, 28002.	2.0	46
115	Coarse-Grained Description of a Brushâ^'Melt Interface in Equilibrium and under Flow. Macromolecules, 2009, 42, 401-410.	4.8	45
116	Computer Simulations of Polymers Close to Solid Interfaces: Some Selected Topics. Journal of Materials Science, 2003, 11, 159-173.	1.2	44
117	Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: The static case. Journal of Chemical Physics, 2013, 138, 064905.	3.0	44
118	Theoretically informed entangled polymer simulations: linear and non-linear rheology of melts. Soft Matter, 2013, 9, 2030.	2.7	43
119	Unmixing of Polymer Blends Confined in Ultrathin Films:Â Crossover between Two-Dimensional and Three-Dimensional Behaviorâ€. Journal of Physical Chemistry B, 2005, 109, 6544-6552.	2.6	41
120	Curvature-Dependent Elastic Properties of Liquid-Ordered Domains Result in Inverted Domain Sorting on Uniaxially Compressed Vesicles. Physical Review Letters, 2011, 106, 148102.	7.8	41
121	The interplay between wetting and phase behaviour in binary polymer films and wedges: Monte Carlo simulations and mean field calculations. Journal of Physics Condensed Matter, 2005, 17, S333-S361.	1.8	40
122	Directing the Self-Assembly of Block Copolymers into A Metastable Complex Network Phase via A Deep and Rapid Quench. Physical Review Letters, 2013, 111, 267801.	7.8	40
123	Dynamics and Rheology of Polymer Melts <i>via</i> Hierarchical Atomistic, Coarse-Grained, and Slip-Spring Simulations. Macromolecules, 2021, 54, 2740-2762.	4.8	40
124	Calculation of the phase behavior of lipids. Physical Review E, 1998, 57, 6973-6978.	2.1	39
125	Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition in binary polymer blends. Europhysics Letters, 2000, 50, 724-730.	2.0	39
126	Interface localization-delocalization transition in a symmetric polymer blend: A finite-size scaling Monte Carlo study. Physical Review E, 2001, 63, 021602.	2.1	39

#	Article	IF	CITATIONS
127	Thin films of asymmetric triblock copolymers: A Monte Carlo study. Journal of Chemical Physics, 2003, 118, 905-913.	3.0	39
128	Order-parameter-based Monte Carlo simulation of crystallization. Journal of Chemical Physics, 2006, 124, 134102.	3.0	39
129	Temperature Dependence of the Slip Length in Polymer Melts at Attractive Surfaces. Physical Review Letters, 2008, 101, 026101.	7.8	39
130	Polymer–solid contacts described by soft, coarse-grained models. Physical Chemistry Chemical Physics, 2011, 13, 10491.	2.8	38
131	Thermodynamics and Kinetics of Defect Motion and Annihilation in the Self-Assembly of Lamellar Diblock Copolymers. Macromolecules, 2016, 49, 6126-6138.	4.8	38
132	Multi-architecture Monte-Carlo (MC) simulation of soft coarse-grained polymeric materials: SOft coarse grained Monte-Carlo Acceleration (SOMA). Computer Physics Communications, 2019, 235, 463-476.	7.5	38
133	Effect of long-range forces on the interfacial profiles in thin binary polymer films. Journal of Chemical Physics, 1999, 110, 1221-1229.	3.0	37
134	Wetting of a short chain liquid on a brush: First-order and critical wetting transitions. Europhysics Letters, 2001, 55, 221-227.	2.0	37
135	Enhanced sampling in simulations of dense systems: The phase behavior of collapsed polymer globules. Journal of Chemical Physics, 2001, 115, 630-635.	3.0	37
136	Elastic properties of polymer interfaces: Aggregation of pure diblock, mixed diblock, and triblock copolymers. Physical Review E, 2002, 66, 041805.	2.1	37
137	Properties of Random Block Copolymer Morphologies: Molecular Dynamics and Single-Chain-in-Mean-Field Simulations. Macromolecules, 2012, 45, 1107-1117.	4.8	37
138	Statics and dynamics of a cylindrical droplet under an external body force. Journal of Chemical Physics, 2008, 128, 014709.	3.0	36
139	Raft Formation in Lipid Bilayers Coupled to Curvature. Biophysical Journal, 2014, 107, 1591-1600.	0.5	36
140	Poly(<i>N</i> -isopropylacrylamide)-Based Mixed Brushes: A Computer Simulation Study. ACS Applied Materials & Interfaces, 2015, 7, 12450-12462.	8.0	36
141	How do droplets on a surface depend on the system size?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 277-291.	4.7	35
142	Self-Assembly in Thin Films of Mixtures of Block Copolymers and Homopolymers Interacting by Hydrogen Bonds. Macromolecules, 2010, 43, 7734-7743.	4.8	35
143	Mechanism of the Cassie-Wenzel transition via the atomistic and continuum string methods. Journal of Chemical Physics, 2015, 142, 104701.	3.0	35
144	Interfaces between highly incompatible polymers of different stiffness: Monte Carlo simulations and self-consistent field calculations. Journal of Chemical Physics, 1997, 107, 10764-10776.	3.0	34

#	Article	IF	CITATIONS
145	Finite size effects on the phase diagram of a binary mixture confined between competing walls. Physica A: Statistical Mechanics and Its Applications, 2000, 279, 188-194.	2.6	34
146	Measuring excess free energies of self-assembled membrane structures. Faraday Discussions, 2010, 144, 369-391.	3.2	34
147	Test of a scaling hypothesis for the structure factor of disordered diblock copolymer melts. Soft Matter, 2012, 8, 11310.	2.7	34
148	Mechanisms of Vesicle Spreading on Surfaces: Coarse-Grained Simulations. Langmuir, 2013, 29, 4335-4349.	3.5	34
149	A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation. Journal of Chemical Physics, 2017, 146, 014903.	3.0	34
150	Reactions at Polymer Interfaces:  A Monte Carlo Simulation. Macromolecules, 1997, 30, 6353-6357.	4.8	33
151	Light deflection from ferroelectric domain boundaries. Applied Physics B: Lasers and Optics, 2004, 78, 367-370.	2.2	33
152	A Monte Carlo test of the Fisher–Nakanishi–Scaling theory for the capillary condensation critical point. Journal of Chemical Physics, 2001, 114, 5853-5862.	3.0	32
153	Phase diagram of solutions of stiff-chain macromolecules: A Monte Carlo simulation. Journal of Chemical Physics, 2003, 118, 10333-10342.	3.0	32
154	Anomalous scaling of the critical temperature of unmixing with chain length for two-dimensional polymer blends. Europhysics Letters, 2003, 61, 214-220.	2.0	32
155	Speeding Up Intrinsically Slow Collective Processes in Particle Simulations by Concurrent Coupling to a Continuum Description. Physical Review Letters, 2011, 107, 227801.	7.8	32
156	Nonequilibrium Simulations of Lamellae Forming Block Copolymers under Steady Shear: A Comparison of Dissipative Particle Dynamics and Brownian Dynamics. Macromolecules, 2012, 45, 8109-8116.	4.8	32
157	Correlation between surface topography and slippage: a Molecular Dynamics study. Soft Matter, 2013, 9, 3613.	2.7	32
158	Conformational Properties of Semiflexible Chains at Nematic Ordering Transitions in Thin Films: A Monte Carlo Simulation. Macromolecules, 2014, 47, 1206-1220.	4.8	32
159	Single-Chain Conformations in Symmetric Binary Polymer Blends:Â Quantitative Comparison between Self-Consistent Field Calculations and Monte Carlo Simulations. Macromolecules, 1998, 31, 9044-9057.	4.8	31
160	Critical lines and phase coexistence of polymer solutions: A quantitative comparison between Wertheim's thermodynamic perturbation theory and computer simulations. Journal of Chemical Physics, 2002, 117, 6360-6371.	3.0	31
161	Monte Carlo simulations of copolymers at homopolymer interfaces: Interfacial structure as a function of the copolymer density. Journal of Chemical Physics, 1999, 110, 5370-5379.	3.0	30
162	Computing free energies of interfaces in self-assembling systems. Physical Chemistry Chemical Physics, 2009, 11, 2087.	2.8	30

#	Article	IF	CITATIONS
163	Deviations from the mean-field predictions for the phase behaviour of random copolymers melts. Europhysics Letters, 2002, 58, 660-665.	2.0	29
164	Micelles of Coilâ^'Comb Block Copolymers in Selective Solvents: Competition of Length Scales. Macromolecules, 2010, 43, 2037-2041.	4.8	29
165	Orientational ordering transitions of semiflexible polymers in thin films: A Monte Carlo simulation. Physical Review E, 2011, 84, 041810.	2.1	29
166	Functional Macromolecular Systems: Kinetic Pathways to Obtain Tailored Structures. Macromolecular Chemistry and Physics, 2019, 220, 1800334.	2.2	29
167	Simulation of Phase Transitions of Single Polymer Chains: Recent Advances. Macromolecular Symposia, 2006, 237, 128-138.	0.7	28
168	Conformational Changes of a Single Semiflexible Macromolecule Near an Adsorbing Surface: A Monte Carlo Simulation. Journal of Physical Chemistry B, 2009, 113, 3653-3668.	2.6	28
169	Uniform Distance Scaling Behavior of Planet–Satellite Nanostructures Made by Star Polymers. Langmuir, 2017, 33, 2017-2026.	3.5	28
170	Stability of thin polymer films: Influence of solvents. Journal of Chemical Physics, 2004, 121, 3816-3828.	3.0	27
171	Phase separation kinetics in compressible polymer solutions: computer simulation of the early stages. New Journal of Physics, 2004, 6, 7-7.	2.9	27
172	An algorithm for the semi-grand-canonical simulation of asymmetric polymer mixtures. Computer Physics Communications, 1994, 84, 173-185.	7.5	26
173	Observation of autophobic dewetting on polymer brushes from computer simulation. Journal of Physics Condensed Matter, 2005, 17, S3523-S3528.	1.8	26
174	Simulation estimates of cloud points of polydisperse fluids. Physical Review E, 2006, 73, 046110.	2.1	26
175	Statics of polymer droplets on deformable surfaces. Journal of Chemical Physics, 2011, 135, 214703.	3.0	26
176	Wall-induced orientational order in athermal semidilute solutions of semiflexible polymers: Monte Carlo simulations of a lattice model. Journal of Chemical Physics, 2013, 138, 234903.	3.0	26
177	Free-energy calculation methods for collective phenomena in membranes. Journal Physics D: Applied Physics, 2015, 48, 343001.	2.8	26
178	Phase diagrams of hexadecane–CO2 mixtures from histogram-reweighting Monte Carlo. Computer Physics Communications, 2002, 147, 378-381.	7.5	25
179	Nucleation in A/B/AB blends: Interplay between microphase assembly and macrophase separation. Journal of Chemical Physics, 2009, 130, 154902.	3.0	24
180	Coarse-grained simulation of dynamin-mediated fission. Soft Matter, 2015, 11, 1464-1480.	2.7	24

Marcus Müller

#	Article	IF	CITATIONS
181	Monte Carlo investigations of phase transitions: status and perspectives. Physica A: Statistical Mechanics and Its Applications, 2000, 281, 112-128.	2.6	23
182	Phase behaviour of quasi-block copolymers: A DFT-based Monte-Carlo study. Soft Matter, 2009, 5, 4499.	2.7	23
183	Process-Accessible States of Block Copolymers. Physical Review Letters, 2017, 118, 067801.	7.8	23
184	Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context. Biointerphases, 2018, 13, 028501.	1.6	23
185	Continuum models for directed self-assembly. Molecular Systems Design and Engineering, 2018, 3, 295-313.	3.4	23
186	Highly Ordered Mesoporous Hydroxide Thin Films through Self-Assembly of Size-Tailored Nanobuilding Blocks: A Theoretical-Experimental Approach. Chemistry of Materials, 2019, 31, 322-330.	6.7	23
187	Interbilayer repulsion forces between tension-free lipid bilayers from simulation. Soft Matter, 2013, 9, 10705.	2.7	22
188	PHASE EQUILIBRIA IN THIN POLYMER FILMS. International Journal of Modern Physics B, 2001, 15, 1867-1903.	2.0	21
189	Formation of enrichment layers in thin polymer films: The influence of single chain dynamics. Journal of Chemical Physics, 2003, 118, 8476-8488.	3.0	21
190	Memory Effects of Diblock Copolymer Brushes and Mixed Brushes. Langmuir, 2010, 26, 1291-1303.	3.5	21
191	Dynamics and Structure of Monolayer Polymer Crystallites on Graphene. Nano Letters, 2016, 16, 6994-7000.	9.1	21
192	Phase separation in mixed polymer brushes on nanoparticle surfaces enables the generation of anisotropic nanoarchitectures. Soft Matter, 2018, 14, 4551-4557.	2.7	21
193	Transitions between Lamellar Orientations in Shear Flow. Macromolecules, 2018, 51, 4642-4659.	4.8	21
194	Kinetic Pathways of Block Copolymer Directed Self-Assembly: Insights from Efficient Continuum Modeling. ACS Nano, 2020, 14, 13986-13994.	14.6	21
195	First-order interface localization-delocalization transition in thin Ising films using Wang-Landau sampling. Physical Review E, 2005, 71, 046705.	2.1	20
196	Spinodal decomposition of polymer solutions: A parallelized molecular dynamics simulation. Physical Review E, 2008, 78, 031801.	2.1	20
197	Title is missing!. Journal of Statistical Physics, 1999, 95, 1045-1068.	1.2	19
198	How Well Can Coarse-Grained Models of Real Polymers Describe Their Structure? The Case of Polybutadiene. Journal of Chemical Theory and Computation, 2006, 2, 588-597.	5.3	19

#	Article	IF	CITATIONS
199	Directed assembly of copolymer materials on patterned substrates: Balance of simple symmetries in complex structures. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2589-2604.	2.1	19
200	Flow, slippage and a hydrodynamic boundary condition of polymers at surfaces. Journal of Physics Condensed Matter, 2008, 20, 494225.	1.8	19
201	Directed Assembly of Supramolecular Copolymers in Thin Films: Thermodynamic and Kinetic Advantages. Physical Review Letters, 2010, 105, 108301.	7.8	19
202	Random Block Copolymers: Structure, Dynamics, and Mechanical Properties in the Bulk and at Selective Substrates. Macromolecules, 2012, 45, 9841-9853.	4.8	19
203	A Detailed Examination of the Topological Constraints of Lamellae-Forming Block Copolymers. Macromolecules, 2018, 51, 2110-2124.	4.8	19
204	Direct imaging of Indium-rich triangular nanoprisms self-organized formed at the edges of InGaN/GaN core-shell nanorods. Scientific Reports, 2018, 8, 16026.	3.3	19
205	Kinetics of pattern formation in symmetric diblock copolymer melts. Journal of Chemical Physics, 2018, 148, 204908.	3.0	19
206	Collective Short-Time Dynamics in Multicomponent Polymer Melts. Macromolecules, 2019, 52, 7704-7720.	4.8	19
207	Corner wetting in the two-dimensional Ising model: Monte Carlo results. Journal of Physics Condensed Matter, 2003, 15, 333-345.	1.8	18
208	Interfaces in the confined Ising system with competing surface fields. Physica A: Statistical Mechanics and Its Applications, 2005, 352, 477-497.	2.6	18
209	Equation of state for macromolecules of variable flexibility in good solvents: A comparison of techniques for Monte Carlo simulations of lattice models. Physical Review E, 2007, 76, 026702.	2.1	18
210	Quasi-Block Copolymers: Design, Synthesis, and Evidence for Their Formation in Solution and in the Melt. Macromolecules, 2011, 44, 9773-9781.	4.8	18
211	Directed transport of polymer drops on vibrating superhydrophobic substrates: a molecular dynamics study. Soft Matter, 2014, 10, 4373.	2.7	18
212	Single-chain-in-mean-field simulations of weak polyelectrolyte brushes. Journal of Chemical Physics, 2016, 145, 224902.	3.0	18
213	Formation of ordered mesostructured TiO ₂ thin films: a soft coarse-grained simulation study. Physical Chemistry Chemical Physics, 2017, 19, 28249-28262.	2.8	18
214	Anomalous Ostwald Ripening Enables 2D Polymer Crystals via Fast Evaporation. Physical Review Letters, 2019, 123, 207801.	7.8	18
215	Controlled Spacing between Nanopatterned Regions in Block Copolymer Films Obtained by Utilizing Substrate Topography for Local Film Thickness Differentiation. ACS Applied Materials & Interfaces, 2019, 11, 35247-35254.	8.0	18
216	â€~Intrinsic' profiles and capillary waves at interfaces between coexisting phases in polymer blends. Advances in Colloid and Interface Science, 2001, 94, 237-248.	14.7	17

#	Article	IF	CITATIONS
217	Symmetric binary polymer blends confined in thin films between competing walls: Interplay between finite size and wetting behavior. Physical Chemistry Chemical Physics, 2001, 3, 1160-1168.	2.8	16
218	Finite size effects in pressure measurements for Monte Carlo simulations of lattice polymer models. Journal of Chemical Physics, 2002, 117, 9934-9941.	3.0	16
219	Collective Lipid Bilayer Dynamics Excited by Surface Acoustic Waves. Physical Review Letters, 2014, 113, 118102.	7.8	16
220	Kinetics of directed self-assembly of block copolymers on chemically patterned substrates. Journal of Physics: Conference Series, 2015, 640, 012010.	0.4	16
221	Membrane stress profiles from self-consistent field theory. Journal of Chemical Physics, 2017, 146, 104901.	3.0	16
222	Stabilityâ^'Instability Transition by Tuning the Effective Interface Potential in Polymeric Bilayer Films. Macromolecules, 2005, 38, 3406-3413.	4.8	15
223	Monte Carlo Simulation of a Homopolymerâ^'Copolymer Mixture Interacting with a Surface: Bulk versus Surface Micelles and Brush Formation. Macromolecules, 2008, 41, 4937-4944.	4.8	15
224	The role of inertia and coarse-graining on the transverse modes of lipid bilayers. Europhysics Letters, 2012, 97, 68010.	2.0	15
225	Diblock Copolymers with Similar Glass Transition Temperatures in Both Blocks for Comparing Shear Orientation Processes with DPD Computer Simulations. Macromolecular Chemistry and Physics, 2018, 219, 1700559.	2.2	15
226	Calculation of membrane bending rigidity using field-theoretic umbrella sampling. Journal of Chemical Physics, 2015, 143, 243155.	3.0	14
227	Dynamics of Long Entangled Polyisoprene Melts <i>via</i> Multiscale Modeling. Macromolecules, 2021, 54, 8693-8713.	4.8	14
228	Temperature Dependence of Single Chain Properties in a Binary Polymer Blend. Journal De Physique II, 1996, 6, 187-194.	0.9	14
229	Intermolecular structure factors of macromolecules in solution: Integral equation results. Physical Review E, 1999, 60, 1921-1929.	2.1	13
230	Suppression of Capillary Wave Broadening of Interfaces in Binary Alloys due to Elastic Interactions. Physical Review Letters, 2005, 95, 096101.	7.8	13
231	Concurrent coupling between a particle simulation and a continuum description. European Physical Journal: Special Topics, 2009, 177, 149-164.	2.6	13
232	Monte-Carlo simulation of ternary blends of block copolymers and homopolymers. Journal of Chemical Physics, 2011, 135, 114904.	3.0	13
233	Exploring thermodynamic stability of the stalk fusion-intermediate with three-dimensional self-consistent field theory calculations. Soft Matter, 2013, 9, 4097.	2.7	13
234	Measuring the composition-curvature coupling in binary lipid membranes by computer simulations. Journal of Chemical Physics, 2014, 141, 194902.	3.0	13

Marcus Müller

#	Article	IF	CITATIONS
235	Functional Poly(<i>N</i> -isopropylacrylamide)/Poly(acrylic acid) Mixed Brushes for Controlled Manipulation of Nanoparticles. Macromolecules, 2016, 49, 5256-5265.	4.8	13
236	Engineering Scale Simulation of Nonequilibrium Network Phases for Battery Electrolytes. Macromolecules, 2019, 52, 2050-2062.	4.8	13
237	Simulation Techniques for Calculating Free Energies. , 2006, , 67-126.		12
238	Geometry-Controlled Interface Localization-Delocalization Transition in Block Copolymers. Physical Review Letters, 2012, 109, 087801.	7.8	12
239	Mixed brush of chemically and physically adsorbed polymers under shear: Inverse transport of the physisorbed species. Journal of Chemical Physics, 2014, 140, 014901.	3.0	12
240	Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers. Journal of Chemical Physics, 2017, 147, 064906.	3.0	12
241	Interfaces in partly compatible polymer mixtures: a Monte-Carlo simulation approach. Physica A: Statistical Mechanics and Its Applications, 1998, 249, 293-300.	2.6	11
242	Phase Behavior of Ultrathin Polymer Mixtures. Macromolecules, 2004, 37, 6676-6679.	4.8	11
243	Phase transitions in nanosystems caused by interface motion: The Ising bipyramid with competing surface fields. Physical Review E, 2005, 72, 031603.	2.1	11
244	Coarse-graining dipolar interactions in simple fluids and polymer solutions: Monte Carlo studies of the phase behavior. Physical Chemistry Chemical Physics, 2009, 11, 1923.	2.8	11
245	Molecular transport and flow past hard and soft surfaces: computer simulation of model systems. Journal of Physics Condensed Matter, 2011, 23, 184105.	1.8	11
246	Block Copolymer Ordering in Cylindrical Capacitors. Macromolecules, 2014, 47, 1850-1864.	4.8	11
247	Alignment of Copolymer Morphology by Planar Step Elongation during Spinodal Self-Assembly. Physical Review Letters, 2015, 115, 228301.	7.8	11
248	High-order sampling schemes for path integrals and Gaussian chain simulations of polymers. Journal of Chemical Physics, 2015, 142, 174105.	3.0	11
249	A new boundary-controlled phase transition: Phase separation in an Ising bi-pyramid with competing surface fields. Europhysics Letters, 2005, 70, 348-354.	2.0	10
250	Study of the confined Ising magnet with long-range competing boundary fields. Journal of Physics Condensed Matter, 2005, 17, 4579-4604.	1.8	10
251	Hydrodynamic boundary condition of polymer melts at simple and complex surfaces. Computer Physics Communications, 2009, 180, 600-604.	7.5	10
252	Comparison of Simulations of Lipid Membranes with Membranes of Block Copolymers. Advances in Polymer Science, 2009, , 43-85.	0.8	10

#	Article	IF	CITATIONS
253	Three-phase coexistence with sequence partitioning in symmetric random block copolymers. Physical Review E, 2011, 83, 051131.	2.1	10
254	Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-χ Block Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 11224-11236.	8.0	10
255	Interplay between wetting and miscibility in thin binary polymer films. Computer Physics Communications, 2002, 147, 292-297.	7.5	9
256	The central role of line tension in the fusion of biological membranes. Molecular Physics, 2005, 103, 3055-3059.	1.7	9
257	Monte Carlo simulations of phase transitions of systems in nanoscopic confinement. Computer Physics Communications, 2007, 177, 140-145.	7.5	9
258	Phase Behavior of Polymer ontaining Systems: Recent Advances Through Computer Simulation. Macromolecular Theory and Simulations, 2011, 20, 600-613.	1.4	9
259	Mesoscopic Simulations of Crosslinked Polymer Networks. Journal of Physics: Conference Series, 2016, 738, 012063.	0.4	9
260	Ordering block copolymers with structured electrodes. Soft Matter, 2017, 13, 486-495.	2.7	9
261	Rheology of symmetric diblock copolymers. Computational Materials Science, 2019, 169, 109107.	3.0	9
262	Nonequilibrium Molecular Conformations in Polymer Self-Consistent Field Theory. Macromolecules, 2020, 53, 10457-10474.	4.8	9
263	How does curvature affect the free-energy barrier of stalk formation? Small vesicles vs apposing, planar membranes. European Biophysics Journal, 2021, 50, 253-264.	2.2	9
264	Ordering kinetics in quasi-one-dimensional Ising-like systems. Journal of Statistical Physics, 1993, 73, 209-233.	1.2	8
265	Sequence Fractionation in Symmetric Random Block Copolymers. Macromolecules, 2010, 43, 3161-3164.	4.8	8
266	An Alternate Path for Fusion and its Exploration by Field-Theoretic Means. Current Topics in Membranes, 2011, 68, 295-323.	0.9	8
267	Arm Retraction Dynamics and Bistability of a Three-Arm Star Polymer in a Nanopore. Macromolecules, 2014, 47, 2156-2168.	4.8	8
268	Process-directed self-assembly of multiblock copolymers: Solvent casting vs spray coating. European Physical Journal: Special Topics, 2016, 225, 1785-1803.	2.6	8
269	Role of translational entropy in spatially inhomogeneous, coarse-grained models. Journal of Chemical Physics, 2018, 148, .	3.0	8
270	Bottlebrush Block Copolymer Assembly in Ultraconfined Films: Effect of Substrate Selectivity. Macromolecules, 2021, 54, 2079-2089.	4.8	8

#	Article	IF	CITATIONS
271	Polymers at Interfaces and Surfaces and in Confined Geometries. , 2012, , 387-416.		7
272	Fabrication of Ellipsoidal Mesostructures in Block Copolymers via a Step-Shear Deformation. Macromolecules, 2018, 51, 275-281.	4.8	7
273	Role of Penetrability into a Brush-Coated Surface in Directed Self-Assembly of Block Copolymers. ACS Applied Materials & Interfaces, 2019, 11, 3571-3581.	8.0	7
274	Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janusâ€Like Films with Timeâ€Dependent Dryâ€State Structures. Small, 2020, 16, e2004922.	10.0	7
275	Impact of Molecular Architecture on Defect Removal in Lamella-Forming Triblock Copolymers. Macromolecules, 2020, 53, 5337-5349.	4.8	7
276	The effect of polydispersity, shape fluctuations and curvature on small unilamellar vesicle small-angle X-ray scattering curves. Journal of Applied Crystallography, 2021, 54, 557-568.	4.5	7
277	Phase diagram of polymer blends in confined geometry. Journal of Molecular Liquids, 2001, 92, 41-52.	4.9	6
278	The Bond Fluctuation Model and Other Lattice Models. , 2005, , 2599-2606.		6
279	Morphology Modulation of Multicomponent Polymer Brushes in Selective Solvent by Patterned Surfaces. Macromolecules, 2015, 48, 213-228.	4.8	6
280	Alkyl-Based Surfactants at a Liquid Mercury Surface: Computer Simulation of Structure, Self-Assembly, and Phase Behavior. Journal of Physical Chemistry Letters, 2016, 7, 1546-1553.	4.6	6
281	Molecular Dynamics Simulation of Alkylthiol Self-Assembled Monolayers on Liquid Mercury. Langmuir, 2017, 33, 744-754.	3.5	6
282	Numerical algorithms for solving self-consistent field theory reversely for block copolymer systems. Journal of Chemical Physics, 2018, 149, 214104.	3.0	6
283	Cresting the Coulomb Barrier of Polyanionic Metal Clusters. Physical Review Letters, 2021, 126, 133001.	7.8	6
284	Microscopic Model to Quantify the Difference of Energy-Transfer Rates between Bonded and Nonbonded Monomers in Polymers. Macromolecules, 2021, 54, 10969-10983.	4.8	6
285	The Annihilating Random Walk as a Model for Domain Growth in One Dimension. Europhysics Letters, 1994, 25, 79-85.	2.0	5
286	Interfaces in polymer blends. Macromolecular Symposia, 2000, 159, 97-104.	0.7	5
287	Monte Carlo simulations of Ising models and polymer blends in double wedge geometry: Evidence for novel types of critical phenomena. Computer Physics Communications, 2005, 169, 226-229.	7.5	5
288	Mixed Polymer Brushes: Switching of Surface Behavior and Chemical Patterning at the Nanoscale. ,		5

2005, , 403-425.

MARCUS MÃ¹/4LLER

#	Article	IF	CITATIONS
289	Study of the dynamic growth of wetting layers in the confined Ising model with competing surface fields. Journal of Physics Condensed Matter, 2006, 18, 2761-2775.	1.8	5
290	Generating multichain configurations of an inhomogeneous melt from the knowledge of single-chain properties. Journal of Chemical Physics, 2008, 128, 224911.	3.0	5
291	Surface tension of liquid mercury: a comparison of density-dependent and density-independent force fields. European Physical Journal B, 2015, 88, 1.	1.5	5
292	Process-directed self-assembly of block copolymers: a computer simulation study. Journal of Physics Condensed Matter, 2015, 27, 194101.	1.8	5
293	Kinetics of Nanoscale Self-Assembly Measured on Liquid Drops by Macroscopic Optical Tensiometry: From Mercury to Water and Fluorocarbons. Journal of the American Chemical Society, 2016, 138, 2585-2591.	13.7	5
294	Evaporation-Induced Liquid Expansion and Bubble Formation in Binary Mixtures. Physical Review Letters, 2021, 126, 028003.	7.8	5
295	MONTE CARLO SIMULATIONS OF INTERFACES IN POLYMER BLENDS. , 1999, , 59-127.		5
296	Molecular simulations and hydrodynamic theory of nonlocal shear-stress correlations in supercooled fluids. Journal of Chemical Physics, 2022, 157, .	3.0	5
297	Study of the dynamical approach to the interface localization–delocalization transition of the confined Ising model. Journal of Physics Condensed Matter, 2004, 16, 3853-3867.	1.8	4
298	Monte Carlo Simulations of Semi-Flexible Polymers. , 2005, , 171-190.		4
299	eMC: A Monte Carlo scheme with energy conservation. Europhysics Letters, 2016, 114, 20001.	2.0	4
300	Nanoscale mapping of carrier recombination in GaAs/AlGaAs core-multishell nanowires by cathodoluminescence imaging in a scanning transmission electron microscope. Applied Physics Letters, 2019, 115, 243102.	3.3	4
301	Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations. Biomacromolecules, 2020, 21, 5008-5020.	5.4	4
302	Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies?. ACS Applied Materials & Interfaces, 2020, 12, 50077-50095.	8.0	4
303	Thermal Imaging of Block Copolymers with Sub-10 nm Resolution. ACS Nano, 2021, 15, 9005-9016.	14.6	4
304	Dynamics of Nonequilibrium Single-Chain Conformations in Triblock Copolymers. Macromolecules, 2021, 54, 6296-6311.	4.8	4
305	Phase Separation of Regular, Quasi-Two-Dimensional <i>AB</i> Copolymer Networks. Macromolecules, 2022, 55, 1279-1294.	4.8	4
306	Memory in the relaxation of a polymer density modulation. Journal of Chemical Physics, 2022, 156, 124902.	3.0	4

Marcus Müller

#	Article	IF	CITATIONS
307	Interfaces between coexisting phases of polymer mixtures: Comparison between Monte Carlo simulations and theoretical predictions. Macromolecular Symposia, 1997, 113, 207-220.	0.7	3
308	Enhanced sampling in simulations of dense systems. Computer Physics Communications, 2002, 146, 113-117.	7.5	3
309	Polymer mixtures in confined geometries: Model systems to explore phase transitions. Pramana - Journal of Physics, 2005, 64, 981-989.	1.8	3
310	Fusion of biological membranes. Pramana - Journal of Physics, 2005, 64, 1127-1134.	1.8	3
311	Self-assembling resists for nanolithography. , 0, , .		3
312	Equilibrium Phase Behavior of Polybutadiene/Polyisoprene Films:Â Binodals and Spinodals. Macromolecules, 2005, 38, 5158-5169.	4.8	3
313	Phase transitions and interface fluctuations in double wedges and bi-pyramids with competing surface fields. European Physical Journal B, 2008, 64, 499-503.	1.5	3
314	Step-Shear Deformation of Block Copolymers. Macromolecules, 2018, 51, 8386-8405.	4.8	3
315	Interface Repulsion and Lamellar Structures in Thin Films of Homopolymer Blends due to Thermal Oscillations. Physical Review Letters, 2019, 122, 237801.	7.8	3
316	Cathodoluminescence nano-characterization of individual GaN/AlN quantum disks embedded in nanowires. Applied Physics Letters, 2020, 117, 133106.	3.3	3
317	Quantitative Synaptic Biology: A Perspective on Techniques, Numbers and Expectations. International Journal of Molecular Sciences, 2020, 21, 7298.	4.1	3
318	Size and charge-state dependence of detachment energies of polyanionic silver clusters. Journal of Chemical Physics, 2021, 155, 164303.	3.0	3
319	Is the "Bricks-and-Mortar―Mesophase Bicontinuous? Dynamic Simulations of Miktoarm Block Copolymer/Homopolymer Blends. Macromolecules, 2022, 55, 745-758.	4.8	3
320	Monte carlo studies of phase transitions in polymer blends and block copolymer melts. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 653-660.	0.4	2
321	Phase transitions in polymeric systems: A challenge for Monte Carlo simulation. Nuclear Physics, Section B, Proceedings Supplements, 1995, 42, 27-41.	0.4	2
322	Interfaces between coexisting phases in polymer mixtures: What can we learn from Monte Carlo simulations?. Macromolecular Symposia, 1999, 139, 1-11.	0.7	2
323	Monte Carlo simulation of polymer mixtures: recent progress. Macromolecular Symposia, 2000, 149, 1-10.	0.7	2
324	Interplay Between Wetting and Phase Behavior in Binary Polymer Films and Wedges: Monte Carlo Simulations and Mean Field Calculations. International Journal of Thermophysics, 2006, 27, 448-466.	2.1	2

#	Article	IF	CITATIONS
325	Dynamical behavior of three-dimensional confined Ising systems with short- and long-range competing surface fields. Physical Review E, 2007, 75, 051603.	2.1	2
326	Ordering of Diblock Copolymer Materials on Patterned Substrates: a Single Chain in Mean Field Simulation Study. Macromolecular Symposia, 2007, 252, 68-75.	0.7	2
327	Interfaces and Interphases in Dense, Polydisperse Living Polymer Systems: A Comparison Between Computer Simulation and Self-Consistent Field Theory. Soft Materials, 2014, 12, S31-S40.	1.7	2
328	Defect annihilation in chemo-epitaxial directed self-assembly: Computer simulation and Self-Consistent Field Theory. Materials Research Society Symposia Proceedings, 2015, 1750, 12.	0.1	2
329	An integrated source/mask/DSA optimization approach. , 2016, , .		2
330	Nanopatterning of Solvent between Apposing Planar Brushes under Pressure. Macromolecules, 2018, 51, 6387-6394.	4.8	2
331	Multiresponsive Janusâ€Like Films: Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janusâ€Like Films with Timeâ€Dependent Dryâ€State Structures (Sma	ll) Tj ET Qql ol	0.7824314 rgBT
332	Liquid and Droplet Transport in Brush-Coated Cylindrical Nanochannels: Brush-Assisted Droplet Formation. Journal of Physical Chemistry B, 2021, 125, 442-449.	2.6	2
333	Comparison of Simulations of Lipid Membranes with Membranes of Block Copolymers. Advances in Polymer Science, 2009, , .	0.8	2
334	Polymer Models on the Lattice. , 2004, , .		2
335	Multifunctional Top-Coats Strategy for DSA of High-χ Block Copolymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 11-16.	0.3	2
336	A versatile setup for studying size and charge-state selected polyanionic nanoparticles. Review of Scientific Instruments, 2022, 93, 043301.	1.3	2
337	Selection of Advances in Theory and Simulation during the First Decade of <i>ACS Macro Letters</i> . ACS Macro Letters, 2021, 10, 1629-1635.	4.8	2
338	Wall-Spring Thermostat: A Novel Approach for Controlling the Dynamics of Soft Coarse-Grained Polymer Fluids at Surfaces. Macromolecules, 2022, 55, 5550-5566.	4.8	2
339	How simulations clarify complex material phase transitions. Computing in Science and Engineering, 1999, 1, 10-12.	1.2	1
340	Properties of the Ising magnet confined in a corner geometry. Applied Surface Science, 2007, 254, 387-391.	6.1	1
341	Monte Carlo study of molecular weight distribution changes induced by degradation of ion beam irradiated polymers. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3235-3238.	1.4	1
342	Polymer Phase Separation. Series in Sof Condensed Matter, 2010, , 47-83.	0.1	1

MARCUS MÃ¹/4LLER

#	Article	IF	CITATIONS
343	Photovoltaically rechargeable fuel cell accumulator for energy self-sufficient microsystems. , 2011, , .		1
344	Living Polymer Systems at a Solid Substrate: Computer Simulation of a Soft, Coarse-Grained Model and Self-Consistent Field Theory. Macromolecules, 2015, 48, 6016-6034.	4.8	1
345	Generalization of the swelling method to measure the intrinsic curvature of lipids. Journal of Chemical Physics, 2017, 147, 224902.	3.0	1
346	Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E. , 1999, , 176-185.		1
347	Monte Carlo Study of Critical Point Shifts in Thin Films. Springer Proceedings in Physics, 2000, , 124-128.	0.2	1
348	Computing how copolymers form nanoscale structures. SPIE Newsroom, 0, , .	0.1	1
349	Phase Separation of Randomly Cross-Linked Diblock Copolymers. Macromolecules, 2022, 55, 5567-5580.	4.8	1
350	On the kinetics of nematic ordering in solutions of semiflexible macromolecules: a Monte Carlo simulation. E-Polymers, 2003, 3, .	3.0	0
351	Chain Conformations and Phase Behavior in Confined Polymer Blends. , 2005, , 3-15.		Ο
352	Properties of the interface in the confined Ising magnet with competing surface fields. Physica B: Condensed Matter, 2007, 389, 202-205.	2.7	0
353	Liquid–Liquid and Liquid–Vapor Interfaces in Polymeric Systems. , 2008, , 183-202.		О
354	Fusion Proteins - Different Tools for Different Jobs?. Biophysical Journal, 2013, 104, 664a.	0.5	0
355	Rigorous simulation and optimization of the lithography/directed self-assembly co-process. Proceedings of SPIE, 2014, , .	0.8	Ο
356	Symmetric diblock copolymers confined into thin films: A Monte Carlo investigation on the CRAY T3E. , 2000, , 82-91.		0
357	Spinodal Decomposition in Binary Polymer Blends: Monte Carlo Simulations and Dynamic Mean Field Theory. , 2001, , 3-12.		Ο
358	Phase Behavior of Binary Polymer Blends in Thin Films. Springer Proceedings in Physics, 2002, , 217-234.	0.2	0
359	Flat Histogram Method of Wang-Landau and N-Fold Way. Springer Proceedings in Physics, 2003, , 200-204.	0.2	0
360	How Do Droplets Depend on the System Size? Droplet Condensation and Nucleation in Small		0

Simulation Cells. , 2003, , 125-135.

#	ARTICLE	IF	CITATIONS
361	The Droplet Evaporation/Condensation Transition in a Finite Volume. Springer Proceedings in Physics, 2004, , 129-133.	0.2	0
362	Polymeric Alloys: Model Materials for the Understanding of the Statistical Thermodynamics of Mixtures. , 1997, , 197-206.		0