
Joost Peter Schanstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5970809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease. Molecular and Cellular Proteomics, 2010, 9, 2424-2437.	3.8	434
2	Urine in Clinical Proteomics. Molecular and Cellular Proteomics, 2008, 7, 1850-1862.	3.8	368
3	Clinical proteomics: A need to define the field and to begin to set adequate standards. Proteomics - Clinical Applications, 2007, 1, 148-156.	1.6	274
4	Recommendations for Biomarker Identification and Qualification in Clinical Proteomics. Science Translational Medicine, 2010, 2, 46ps42.	12.4	273
5	Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nature Medicine, 2006, 12, 398-400.	30.7	248
6	Anomalies of the TCF2 Gene Are the Main Cause of Fetal Bilateral Hyperechogenic Kidneys. Journal of the American Society of Nephrology: JASN, 2007, 18, 923-933.	6.1	216
7	Body Fluid Proteomics for Biomarker Discovery: Lessons from the Past Hold the Key to Success in the Future. Journal of Proteome Research, 2007, 6, 4549-4555.	3.7	216
8	Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides. Journal of the American Society of Nephrology: JASN, 2015, 26, 1999-2010.	6.1	205
9	Obstructive nephropathy: Insights from genetically engineered animals. Kidney International, 2005, 68, 925-937.	5.2	200
10	LPA1 Receptor Activation Promotes Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2007, 18, 3110-3118.	6.1	185
11	CEâ€MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics - Clinical Applications, 2008, 2, 964-973.	1.6	178
12	Capillary electrophoresis–mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: An update of recent developments. Mass Spectrometry Reviews, 2009, 28, 703-724.	5.4	175
13	The B1-agonist [des-Arg10]-kallidin activates transcription factor NF-kappaB and induces homologous upregulation of the bradykinin B1-receptor in cultured human lung fibroblasts Journal of Clinical Investigation, 1998, 101, 2080-2091.	8.2	167
14	Implementation of proteomic biomarkers: making it work. European Journal of Clinical Investigation, 2012, 42, 1027-1036.	3.4	151
15	Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics - Clinical Applications, 2010, 4, 464-478.	1.6	139
16	In vivo bradykinin B2 receptor activation reduces renal fibrosis. Journal of Clinical Investigation, 2002, 110, 371-379.	8.2	123
17	Specific Macrophage Subtypes Influence the Progression of Rhabdomyolysis-Induced Kidney Injury. Journal of the American Society of Nephrology: JASN, 2015, 26, 1363-1377.	6.1	122
18	Induction of Functional Bradykinin B1-Receptors in Normotensive Rats and Mice Under Chronic Angiotensin-Converting Enzyme Inhibitor Treatment. Circulation, 2002, 105, 627-632.	1.6	115

#	Article	IF	CITATIONS
19	Role of Kinin B 2 Receptor Signaling in the Recruitment of Circulating Progenitor Cells With Neovascularization Potential. Circulation Research, 2008, 103, 1335-1343.	4.5	108
20	Addressing the Challenge of Defining Valid Proteomic Biomarkers and Classifiers. BMC Bioinformatics, 2010, 11, 594.	2.6	108
21	Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrology Dialysis Transplantation, 2014, 29, 1563-1570.	0.7	106
22	The HNF1B score is a simple tool to select patients for HNF1B gene analysis. Kidney International, 2014, 86, 1007-1015.	5.2	104
23	Kinetics of Halide Release of Haloalkane Dehalogenase: Evidence for a Slow Conformational Changeâ€. Biochemistry, 1996, 35, 5624-5632.	2.5	98
24	Specificity and Kinetics of Haloalkane Dehalogenase. Journal of Biological Chemistry, 1996, 271, 14747-14753.	3.4	95
25	CEâ€MS in biomarker discovery, validation, and clinical application. Proteomics - Clinical Applications, 2011, 5, 9-23.	1.6	88
26	Fetal Urinary Peptides to Predict Postnatal Outcome of Renal Disease in Fetuses with Posterior Urethral Valves (PUV). Science Translational Medicine, 2013, 5, 198ra106.	12.4	86
27	The human urinary proteome reveals high similarity between kidney aging and chronic kidney disease. Proteomics, 2009, 9, 2108-2117.	2.2	82
28	Congenital ureteropelvic junction obstruction: human disease and animal models. International Journal of Experimental Pathology, 2011, 92, 168-192.	1.3	81
29	The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study. Nephrology Dialysis Transplantation, 2014, 29, 1500-1507.	0.7	81
30	Lysophosphatidic acid and renal fibrosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 582-587.	2.4	78
31	Prediction of Chronic Kidney Disease Stage 3 by CKD273, a Urinary Proteomic Biomarker. Kidney International Reports, 2017, 2, 1066-1075.	0.8	77
32	Proteomics of Vitreous Humor of Patients with Exudative Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e96895.	2.5	74
33	A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrology Dialysis Transplantation, 2017, 32, gfw239.	0.7	73
34	Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opinion on Investigational Drugs, 2011, 20, 657-667.	4.1	72
35	Kinetic Characterization and X-ray Structure of a Mutant of Haloalkane Dehalogenase with Higher Catalytic Activity and Modified Substrate Rangeâ€,‡. Biochemistry, 1996, 35, 13186-13195.	2.5	70
36	Urinary Proteomics Based on Capillary Electrophoresis-Coupled Mass Spectrometry in Kidney Disease: Discovery and Validation of Biomarkers, and Clinical Application. Advances in Chronic Kidney Disease, 2010, 17, 493-506.	1.4	69

#	Article	IF	CITATIONS
37	Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies?. Scientific Reports, 2017, 7, 16915.	3.3	67
38	Advances in urinary proteome analysis and biomarker discovery in pediatric renal disease. Pediatric Nephrology, 2010, 25, 27-35.	1.7	66
39	The urinary proteome in diabetes and diabetesâ€associated complications: New ways to assess disease progression and evaluate therapy. Proteomics - Clinical Applications, 2008, 2, 997-1007.	1.6	64
40	Discovery and validation of urinary biomarkers for detection of renal cell carcinoma. Journal of Proteomics, 2014, 98, 44-58.	2.4	64
41	New insights in molecular mechanisms involved in chronic kidney disease using high-resolution plasma proteome analysis. Nephrology Dialysis Transplantation, 2015, 30, 1842-1852.	0.7	64
42	In vivo bradykinin B2 receptor activation reduces renal fibrosis. Journal of Clinical Investigation, 2002, 110, 371-379.	8.2	64
43	Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrology Dialysis Transplantation, 2017, 32, gfw337.	0.7	62
44	Kinin B1 Receptor Deficiency Leads to Leptin Hypersensitivity and Resistance to Obesity. Diabetes, 2008, 57, 1491-1500.	0.6	61
45	Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy. FASEB Journal, 2009, 23, 134-142.	0.5	60
46	A Novel Protein-Protein Interaction between a G Protein-coupled Receptor and the Phosphatase SHP-2 Is Involved in Bradykinin-induced Inhibition of Cell Proliferation. Journal of Biological Chemistry, 2002, 277, 40375-40383.	3.4	59
47	The role of urinary peptidomics in kidney diseaseÂresearch. Kidney International, 2016, 89, 539-545.	5.2	59
48	Urinary proteome analysis identifies infants but not older children requiring pyeloplasty. Pediatric Nephrology, 2010, 25, 1673-1678.	1.7	58
49	A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. Journal of Proteomics, 2012, 75, 5888-5897.	2.4	58
50	Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE, 2015, 10, e0131416.	2.5	54
51	Construction of an Expression and Site-Directed Mutagenesis System of Haloalkane Dehalogenase in Escherichia coli. Protein Expression and Purification, 1993, 4, 479-489.	1.3	52
52	Long Term Metabolic Syndrome Induced by a High Fat High Fructose Diet Leads to Minimal Renal Injury in C57BL/6 Mice. PLoS ONE, 2013, 8, e76703.	2.5	50
53	Non-invasive markers of ureteropelvic junction obstruction. World Journal of Urology, 2007, 25, 457-465.	2.2	49
54	Risk profile, quality of life and care of patients with moderate and advanced CKD: The French CKD-REIN Cohort Study. Nephrology Dialysis Transplantation, 2019, 34, 277-286.	0.7	49

#	Article	IF	CITATIONS
55	Induction of B ₁ receptors in streptozotocin diabetic rats: possible involvement in the control of hyperglycemia-induced glomerular Erk 1 and 2 phosphorylation. Canadian Journal of Physiology and Pharmacology, 2002, 80, 328-333.	1.4	48
56	Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease. Journal of Translational Medicine, 2018, 16, 104.	4.4	48
57	Blockade of the Kinin B1 Receptor Ameloriates Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2010, 21, 1157-1164.	6.1	47
58	Hepatocyte Nuclear Factor-1β Controls Mitochondrial Respiration in Renal Tubular Cells. Journal of the American Society of Nephrology: JASN, 2017, 28, 3205-3217.	6.1	43
59	Functional rescue of a defective angiotensin II AT1 receptor mutant by the Mas protooncogene. Regulatory Peptides, 2007, 141, 159-167.	1.9	41
60	Capillary electrophoresis–mass spectrometry in urinary proteome analysis: current applications and future developments. Analytical and Bioanalytical Chemistry, 2009, 393, 1431-1442.	3.7	41
61	Proteomic urinary biomarker approach in renal disease: from discovery to implementation. Pediatric Nephrology, 2015, 30, 713-725.	1.7	39
62	Comparison of Urine and Plasma Peptidome Indicates Selectivity in Renal Peptide Handling. Proteomics - Clinical Applications, 2018, 12, e1700163.	1.6	38
63	Urinary peptides in heart failure: a link to molecular pathophysiology. European Journal of Heart Failure, 2021, 23, 1875-1887.	7.1	37
64	Decreased renal NO excretion and reduced glomerular tuft area in mice lacking the bradykinin B ₂ receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1904-H1908.	3.2	36
65	Identification of Urinary Biomarkers by Proteomics in Newborns: Use in Obstructive Nephropathy. , 2008, 160, 127-141.		36
66	Systems biology: opening new avenues in clinical research. Nephrology Dialysis Transplantation, 2010, 25, 1015-1018.	0.7	36
67	Proteomics of vitreous in neovascular age-related macular degeneration. Experimental Eye Research, 2016, 146, 107-117.	2.6	36
68	Establishment of a European Network for Urine and Kidney Proteomics. Journal of Proteomics, 2008, 71, 490-492.	2.4	35
69	Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function. Biological Chemistry, 2006, 387, 431-436.	2.5	34
70	Differential induction of functional B1-bradykinin receptors along the rat nephron in endotoxin induced inflammation. Kidney International, 1998, 54, 1888-1898.	5.2	33
71	The KUPKB: a novel Web application to access multiomics data on kidney disease. FASEB Journal, 2012, 26, 2145-2153.	0.5	33
72	Omics databases on kidney disease: where they can be found and how to benefit from them. CKJ: Clinical Kidney Journal, 2016, 9, 343-352.	2.9	33

#	Article	IF	CITATIONS
73	Urinary proteomics can define distinct diagnostic inflammatory arthritis subgroups. Scientific Reports, 2017, 7, 40473.	3.3	32
74	Urinary Proteome Analysis at 5-Year Followup of Patients With Nonoperated Ureteropelvic Junction Obstruction Suggests Ongoing Kidney Remodeling. Journal of Urology, 2012, 187, 1006-1011.	0.4	31
75	Clinical proteomics in obstetrics and neonatology. Expert Review of Proteomics, 2014, 11, 75-89.	3.0	31
76	Urinary peptidomics provides a noninvasive humanized readout of diabetic nephropathy inÂmice. Kidney International, 2016, 90, 1045-1055.	5.2	31
77	Identification of Symptomatic Fetuses Infected with Cytomegalovirus Using Amniotic Fluid Peptide Biomarkers. PLoS Pathogens, 2016, 12, e1005395.	4.7	31
78	Identification of ageing-associated naturally occurring peptides in human urine. Oncotarget, 2015, 6, 34106-34117.	1.8	31
79	miRNAs in urine: a mirror image of kidney disease?. Expert Review of Molecular Diagnostics, 2015, 15, 361-374.	3.1	30
80	Prediction of acute coronary syndromes by urinary proteome analysis. PLoS ONE, 2017, 12, e0172036.	2.5	30
81	Developing a kidney and urinary pathway knowledge base. Journal of Biomedical Semantics, 2011, 2, S7.	1.6	29
82	Value of Urine Peptides in Assessing Kidney and Cardiovascular Disease. Proteomics - Clinical Applications, 2021, 15, e2000027.	1.6	29
83	A capillary electrophoresis coupled to mass spectrometry pipeline for long term comparable assessment of the urinary metabolome. Scientific Reports, 2016, 6, 34453.	3.3	28
84	Urinary peptidomics analysis reveals proteases involved in diabetic nephropathy. Scientific Reports, 2017, 7, 15160.	3.3	28
85	Inhibition of IGF-l–induced Erk 1 and 2 activation and mitogenesis in mesangial cells by bradykinin. Kidney International, 2002, 62, 412-421.	5.2	27
86	Molecular determinants of LPS-induced acute renal inflammation: Implication of the kinin B1 receptor. Biochemical and Biophysical Research Communications, 2009, 386, 407-412.	2.1	27
87	Definition, diagnosis and management of fetal lower urinary tract obstruction: consensus of the ERKNet CAKUT-Obstructive Uropathy Work Group. Nature Reviews Urology, 2022, 19, 295-303.	3.8	27
88	Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging. Theranostics, 2015, 5, 1187-1202.	10.0	26
89	Populous: a tool for building OWL ontologies from templates. BMC Bioinformatics, 2012, 13, S5.	2.6	25
90	Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight, 2019, 4, .	5.0	25

#	Article	IF	CITATIONS
91	Bradykinin B1Receptor-Mediated Changes in Renal Hemodynamics during Endotoxin-Induced Inflammation. Journal of the American Society of Nephrology: JASN, 2000, 11, 1208-1215.	6.1	25
92	Renal fibrosis: Insight from proteomics in animal models and human disease. Proteomics, 2011, 11, 805-815.	2.2	24
93	Pargyline reduces renal damage associated with ischaemia-reperfusion and cyclosporin. Nephrology Dialysis Transplantation, 2011, 26, 489-498.	0.7	24
94	Label-free Quantitative Urinary Proteomics Identifies the Arginase Pathway as a New Player in Congenital Obstructive Nephropathy. Molecular and Cellular Proteomics, 2014, 13, 3421-3434.	3.8	24
95	Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Review of Proteomics, 2014, 11, 535-548.	3.0	24
96	Urinary Peptide Analysis Differentiates Pancreatic Cancer From Chronic Pancreatitis. Pancreas, 2016, 45, 1018-1026.	1.1	24
97	Urinary lysophopholipids are increased in diabetic patients with nephropathy. Journal of Diabetes and Its Complications, 2017, 31, 1103-1108.	2.3	24
98	Urinary peptidomics in kidney disease and drug research. Expert Opinion on Drug Discovery, 2018, 13, 259-268.	5.0	24
99	Influence of mutations of Val226 on the catalytic rate of haloalkane dehalogenase. Protein Engineering, Design and Selection, 1997, 10, 53-61.	2.1	23
100	Laminar Shear Stress Regulates Endothelial Kinin B1 Receptor Expression and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1757-1763.	2.4	23
101	Hnf-1β Transcription Factor Is an Early Hif-1α-Independent Marker of Epithelial Hypoxia and Controls Renal Repair. PLoS ONE, 2013, 8, e63585.	2.5	23
102	Proteomics as a Quality Control Tool of Pharmaceutical Probiotic Bacterial Lysate Products. PLoS ONE, 2013, 8, e66682.	2.5	23
103	Proteomics based identification of KDM5 histone demethylases associated with cardiovascular disease. EBioMedicine, 2019, 41, 91-104.	6.1	23
104	Prevalence of atheromatous and non-atheromatous cardiovascular disease by age in chronic kidney disease. Nephrology Dialysis Transplantation, 2020, 35, 827-836.	0.7	23
105	Expression and distribution of kinin B1 receptor in the rat brain and alterations induced by diabetes in the model of streptozotocin. Synapse, 2005, 57, 29-37.	1.2	22
106	Systems biology to battle vascular disease. Nephrology Dialysis Transplantation, 2010, 25, 1019-1022.	0.7	22
107	Proteome-Based Systems Biology Analysis of the Diabetic Mouse Aorta Reveals Major Changes in Fatty Acid Biosynthesis as Potential Hallmark in Diabetes Mellitus–Associated Vascular Disease. Circulation: Cardiovascular Genetics, 2014, 7, 161-170.	5.1	22
108	Improving peptide relative quantification in MALDI-TOF MS for biomarker assessment. Proteomics, 2013, 13, 2967-2975.	2.2	21

#	Article	IF	CITATIONS
109	Increased urine acylcarnitines in diabetic ApoE -/- mice: Hydroxytetradecadienoylcarnitine (C14:2-OH) reflects diabetic nephropathy in a context of hyperlipidemia. Biochemical and Biophysical Research Communications, 2017, 487, 109-115.	2.1	21
110	Proteomic Analysis of Vitreous Humor in Retinal Vein Occlusion. PLoS ONE, 2016, 11, e0158001.	2.5	21
111	Gene expression profiling in the remnant kidney model of wild type and kinin B1 and B2 receptor knockout mice. Kidney International, 2007, 72, 442-454.	5.2	20
112	Delayed Treatment with Plasminogen Activator Inhibitor-1 Decoys Reduces Tubulointerstitial Fibrosis. Experimental Biology and Medicine, 2009, 234, 1511-1518.	2.4	20
113	Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis. Biochemical and Biophysical Research Communications, 2013, 438, 257-263.	2.1	20
114	Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis, 2014, 6, 247-266.	1.5	20
115	Lysophosphatidic Acid Protects Against Endotoxin-Induced Acute Kidney Injury. Inflammation, 2017, 40, 1707-1716.	3.8	20
116	Epidemiologic observations guiding clinical application of a urinary peptidomic marker of diastolic left ventricular dysfunction. Journal of the American Society of Hypertension, 2018, 12, 438-447.e4.	2.3	20
117	Validity and reproducibility of a short food frequency questionnaire among patients with chronic kidney disease. BMC Nephrology, 2017, 18, 297.	1.8	19
118	Renal tubular fluid shear stress facilitates monocyte activation toward inflammatory macrophages. American Journal of Physiology - Renal Physiology, 2012, 302, F1409-F1417.	2.7	18
119	Proteome analysis in the assessment of ageing. Ageing Research Reviews, 2014, 18, 74-85.	10.9	18
120	Increased urinary lysophosphatidic acid in mouse with subtotal nephrectomy: potential involvement in chronic kidney disease. Journal of Physiology and Biochemistry, 2016, 72, 803-812.	3.0	18
121	The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: objectives and design. CKJ: Clinical Kidney Journal, 2020, 13, 371-379.	2.9	18
122	In vivo bradykinin B2 receptor activation reduces renal fibrosis. Journal of Clinical Investigation, 2002, 110, 371-379.	8.2	18
123	Transcriptional Regulation of the Rat Bradykinin B2 Receptor Gene: Identification of a Silencer Element. Molecular Pharmacology, 2002, 62, 1344-1355.	2.3	17
124	The use of urinary proteomics in the assessment of suitability of mouse models for ageing. PLoS ONE, 2017, 12, e0166875.	2.5	17
125	A single-center study to evaluate the efficacy of a fetal urine peptide signature predicting postnatal renal outcome in fetuses with posterior urethral valves. Pediatric Nephrology, 2020, 35, 469-475.	1.7	17
126	Renal tubular fluid shear stress promotes endothelial cell activation. Biochemical and Biophysical Research Communications, 2011, 407, 813-817.	2.1	16

#	Article	IF	CITATIONS
127	Combination of the fetal urinary metabolome and peptidome for the prediction of postnatal renal outcome in fetuses with PUV. Journal of Proteomics, 2018, 184, 1-9.	2.4	16
128	Urinary proteome signature of Renal Cysts and Diabetes syndrome in children. Scientific Reports, 2019, 9, 2225.	3.3	15
129	Amniotic fluid peptides predict postnatal kidney survival in developmental kidney disease. Kidney International, 2021, 99, 737-749.	5.2	15
130	Collagen-Derived Peptides in CKD: A Link to Fibrosis. Toxins, 2022, 14, 10.	3.4	15
131	Connectivity mapping of glomerular proteins identifies dimethylaminoparthenolide as a new inhibitor of diabetic kidney disease. Scientific Reports, 2020, 10, 14898.	3.3	14
132	Engineering proteins for environmental applications. Current Opinion in Biotechnology, 1994, 5, 253-259.	6.6	13
133	B ₂ kinin receptor upregulation by cAMP is associated with BK-induced PGE ₂ production in rat mesangial cells. American Journal of Physiology - Renal Physiology, 1998, 274, F532-F540.	2.7	13
134	Participation of transmembrane proline 82 in angiotensin II AT1 receptor signal transduction. Regulatory Peptides, 2007, 140, 32-36.	1.9	13
135	The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases. BMC Bioinformatics, 2013, 14, 235.	2.6	13
136	Ldlr and ApoE mice better mimic the human metabolite signature of increased carotid intima media thickness compared to other animal models of cardiovascular disease. Atherosclerosis, 2018, 276, 140-147.	0.8	13
137	The CKD plasma lipidome varies with disease severity and outcome. Journal of Clinical Lipidology, 2019, 13, 176-185.e8.	1.5	13
138	Administration of the High-Density Lipoprotein Mimetic CER-001 for Inherited Lecithin–Cholesterol Acyltransferase Deficiency. Annals of Internal Medicine, 2021, 174, 1022-1025.	3.9	13
139	Bradykinin and Renal Fibrosis: Have We ACE'd it?. Journal of the American Society of Nephrology: JASN, 2004, 15, 2504-2506.	6.1	12
140	Protein Interactome of Muscle Invasive Bladder Cancer. PLoS ONE, 2015, 10, e0116404.	2.5	12
141	Epidermal growth factor and kidney disease: a long-lasting story. Kidney International, 2016, 89, 985-987.	5.2	12
142	Systems biology combining human- and animal-data miRNA and mRNA data identifies new targets in ureteropelvic junction obstruction. BMC Systems Biology, 2017, 11, 31.	3.0	12
143	Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation. Diagnostics, 2020, 10, 655.	2.6	12
144	Direct protein–protein interaction between PLCγ1 and the bradykinin B2 receptor—Importance of growth conditions. Biochemical and Biophysical Research Communications, 2005, 326, 894-900.	2.1	11

#	Article	IF	CITATIONS
145	Renal gene expression profiling using kinin B1 and B2 receptor knockout mice reveals comparable modulation of functionally related genes. Biological Chemistry, 2006, 387, 15-22.	2.5	11
146	Implementation of CE-MS-identified proteome-based biomarker panels in drug development and patient management. Bioanalysis, 2016, 8, 439-455.	1.5	11
147	Associations of urinary polymeric immunoglobulin receptor peptides in the context of cardio-renal syndrome. Scientific Reports, 2020, 10, 8291.	3.3	10
148	Urinary Peptides as Potential Non-Invasive Biomarkers for Lupus Nephritis: Results of the Peptidu-LUP Study. Journal of Clinical Medicine, 2021, 10, 1690.	2.4	10
149	2nd Combined Working Group and Management Committee Meeting of Urine and Kidney Proteomics COST Action 29–30 March 2009, Nafplio, Greece. Proteomics - Clinical Applications, 2009, 3, 1017-1022.	1.6	9
150	Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive. Frontiers in Pharmacology, 2015, 6, 8.	3.5	9
151	Molecular structure and transcriptional regulation by nuclear factor- $\hat{I}^{e}B$ of the mouse kinin B1 receptor gene. Biological Chemistry, 2005, 386, 515-22.	2.5	8
152	Implementation of Proteomics Biomarkers in Nephrology: From Animal Models to Human Application?. Proteomics - Clinical Applications, 2019, 13, 1800089.	1.6	8
153	Comparison of the amniotic fluid and fetal urine peptidome for biomarker discovery in renal developmental disease. Scientific Reports, 2020, 10, 21706.	3.3	8
154	Hepatocyte nuclear factorâ€1β shapes the energetic homeostasis of kidney tubule cells. FASEB Journal, 2021, 35, e21931.	0.5	8
155	Is the time ripe for kidney tissue proteomics?. Proteomics - Clinical Applications, 2011, 5, 215-221.	1.6	7
156	Body fluid peptide and protein signatures in diabetic kidney diseases. Nephrology Dialysis Transplantation, 2015, 30, iv43-iv53.	0.7	7
157	Urinary biomarkers for renal tract malformations. Expert Review of Proteomics, 2016, 13, 1121-1129.	3.0	7
158	Omics Derived Biomarkers and Novel Drug Targets for Improved Intervention in Advanced Prostate Cancer. Diagnostics, 2020, 10, 658.	2.6	7
159	Pretransplant urinary proteome analysis does not predict development of chronic kidney disease after liver transplantation. Liver International, 2015, 35, 1893-1901.	3.9	6
160	Calcineurin Inhibitors Downregulate HNF-1β and May Affect the Outcome of HNF1B Patients After Renal Transplantation. Transplantation, 2016, 100, 1970-1978.	1.0	6
161	Comparison of different statistical approaches for urinary peptide biomarker detection in the context of coronary artery disease. BMC Bioinformatics, 2016, 17, 496.	2.6	6
162	The protective effect of angiotensin converting enzyme inhibition in experimental renal fibrosis in mice is not mediated by bradykinin B2 receptor activation. Thrombosis and Haemostasis, 2003, 89, 735-40.	3.4	6

#	Article	IF	CITATIONS
163	Homologous and heterologous induction of the human bradykinin B1-receptor and B1-receptor localisation along the rat nephron. Immunopharmacology, 1999, 45, 29-34.	2.0	5
164	B2receptor activation reduces Erk1 and Erk2 phosphorylation induced by insulin-like growth factor-1, platelet-derived growth factor-BB, and high glucose in rat isolated glomeruli. Canadian Journal of Physiology and Pharmacology, 2002, 80, 341-345.	1.4	4
165	PRYNT: a tool for prioritization of disease candidates from proteomics data using a combination of shortest-path and random walk algorithms. Scientific Reports, 2021, 11, 5764.	3.3	4
166	Mapping of the amniotic fluid proteome of fetuses with congenital anomalies of the kidney and urinary tract identifies plastin 3 as a protein involved in glomerular integrity. Journal of Pathology, 2021, 254, 575-588.	4.5	4
167	Renal and Urinary Proteomics. Proteomics - Clinical Applications, 2011, 5, 211-213.	1.6	3
168	Asymptomatic circulating T-cell clone cause renal polymorphic inflammatory fibrosis. Clinical and Experimental Nephrology, 2017, 21, 781-786.	1.6	3
169	Apelin affects the mouse aging urinary peptidome with minimal effects on kidney. Scientific Reports, 2019, 9, 10647.	3.3	3
170	The low affinity p75 neurotrophin receptor is down-regulated in congenital anomalies of the kidney and the urinary tract: Possible involvement in early nephrogenesis. Biochemical and Biophysical Research Communications, 2020, 533, 786-791.	2.1	3
171	A nest in renal fibrosis?. Kidney International, 2007, 72, 242-244.	5.2	2
172	FP223URINARY PEPTIDE-BASED PREDICTION OF PROGRESSION FROM CHRONIC KIDNEY DISEASE STAGE II TO III. Nephrology Dialysis Transplantation, 2015, 30, iii141-iii141.	0.7	1
173	FP279HIGH-RESOLUTION PLASMA PROTEOME ANALYSIS IDENTIFIES NEW CHANGES IN MOLECULAR MECHANISMS INVOLVED IN CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2015, 30, iii160-iii161.	0.7	1
174	Ibrutinib does not prevent kidney fibrosis following acute and chronic injury. Scientific Reports, 2021, 11, 11985.	3.3	1
175	FP303POSSIBLE ROLE OF MIRNAS IN OBSTRUCTIVE NEPHROPATHY. Nephrology Dialysis Transplantation, 2015, 30, iii168-iii168.	0.7	0
176	FP308URINARY PROTEOMICS TO DECIPHER MOLECULAR PATHOPHYSIOLOGY OF CKD PROGRESSION. Nephrology Dialysis Transplantation, 2015, 30, iii170-iii170.	0.7	0
177	Omics Tools for Exploration of Renal Disorders. , 2016, , 165-183.		0
178	Addition to the Special Issue on the CTP network consisting of reviews and original papers emerging from the CTPIOD meeting (Contribution To Progress in Obesity and Diabetes Research) 2016. Journal of Physiology and Biochemistry, 2016, 73, 415-415.	3.0	0
179	Engineering Enzymes and Microorganisms for the Transformation of Synthetic Compounds. , 1997, , 47-57.		0
180	Haploinsufficiency of the mouse <i>Tshz3</i> gene leads to kidney defects. Human Molecular Genetics, 2022, 31, 1921-1945.	2.9	0