Gang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5969846/publications.pdf

Version: 2024-02-01

51 papers	2,312 citations	236925 25 h-index	214800 47 g-index
54	54	54	3005
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Estimating spatial and temporal patterns of urban building anthropogenic heat using a bottom-up city building heat emission model. Resources, Conservation and Recycling, 2022, 177, 105996.	10.8	10
2	Sustainable urban systems: from landscape to ecological processes. Ecological Processes, 2022, 11, 26.	3.9	3
3	UrbanWatch: A 1-meter resolution land cover and land use database for 22 major cities in the United States. Remote Sensing of Environment, 2022, 278, 113106.	11.0	13
4	Tools and Technologies for Quantifying Spread and Impacts of Invasive Species., 2021,, 243-265.		1
5	Forest landscape patterns shaped by interactions between wildfire and sudden oak death disease. Forest Ecology and Management, 2021, 486, 118987.	3.2	11
6	Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 176, 250-261.	11.1	28
7	Urban Building Type Mapping Using Geospatial Data: A Case Study of Beijing, China. Remote Sensing, 2020, 12, 2805.	4.0	23
8	Detecting Plant Invasion in Urban Parks with Aerial Image Time Series and Residual Neural Network. Remote Sensing, 2020, 12, 3493.	4.0	4
9	Recurrent Shadow Attention Model (RSAM) for shadow removal in high-resolution urban land-cover mapping. Remote Sensing of Environment, 2020, 247, 111945.	11.0	25
10	Tree canopy cover and carbon density are different proxy indicators for assessing the relationship between forest structure and urban socio-ecological conditions. Ecological Indicators, 2020, 113, 106279.	6.3	6
11	Remote Detection of Large-Area Crop Types: The Role of Plant Phenology and Topography. Agriculture (Switzerland), 2019, 9, 150.	3.1	10
12	Aedes Mosquito Infestation in Socioeconomically Contrasting Neighborhoods of Panama City. EcoHealth, 2019, 16, 210-221.	2.0	20
13	An operational machine learning approach to predict mosquito abundance based on socioeconomic and landscape patterns. Landscape Ecology, 2019, 34, 1295-1311.	4.2	21
14	Integrating multi-sensor remote sensing and species distribution modeling to map the spread of emerging forest disease and tree mortality. Remote Sensing of Environment, 2019, 231, 111238.	11.0	42
15	Line-based image segmentation method: a new approach to segment VHSR remote sensing images automatically. European Journal of Remote Sensing, 2019, 52, 613-631.	3.5	3
16	A disturbance weighting analysis model (DWAM) for mapping wildfire burn severity in the presence of forest disease. Remote Sensing of Environment, 2019, 221, 108-121.	11.0	13
17	Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GIScience and Remote Sensing, 2018, 55, 159-182.	5.9	205
18	A Novel Sampling Method to Measure Socioeconomic Drivers of Aedes Albopictus Distribution in Mecklenburg County, North Carolina. International Journal of Environmental Research and Public Health, 2018, 15, 2179.	2.6	12

#	Article	IF	CITATIONS
19	Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel- and object-based tree growth model and annual Landsat time series. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144, 94-104.	11.1	33
20	Integration of historical map and aerial imagery to characterize long-term land-use change and landscape dynamics: An object-based analysis via Random Forests. Ecological Indicators, 2018, 95, 595-605.	6.3	42
21	Assessing the impact of emerging forest disease on wildfire using Landsat and KOMPSAT-2 data. Remote Sensing of Environment, 2017, 195, 218-229.	11.0	20
22	Uncertainties in mapping forest carbon in urban ecosystems. Journal of Environmental Management, 2017, 187, 229-238.	7.8	20
23	Modeling urban building energy use: A review of modeling approaches and procedures. Energy, 2017, 141, 2445-2457.	8.8	185
24	Assessing effect of dominant land-cover types and pattern on urban forest biomass estimated using LiDAR metrics. Urban Ecosystems, 2017, 20, 265-275.	2.4	11
25	Impacts of Land Cover and Seasonal Variation on Maximum Air Temperature Estimation Using MODIS Imagery. Remote Sensing, 2017, 9, 233.	4.0	15
26	Spatial estimation of wind speed: a new integrative model using inverse distance weighting and power law. International Journal of Digital Earth, 2016, 9, 733-747.	3.9	18
27	When Big Data are Too Much: Effects of LiDAR Returns and Point Density on Estimation of Forest Biomass. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 3210-3218.	4.9	20
28	Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 159-170.	2.8	53
29	Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the TucuruÃ-hydroelectricÂdam in the Amazon basin. Applied Geography, 2015, 63, 1-8.	3.7	63
30	The impact of urban residential development patterns on forest carbon density: An integration of LiDAR, aerial photography and field mensuration. Landscape and Urban Planning, 2015, 136, 97-109.	7.5	47
31	Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102, 38-47.	11.1	27
32	Effects of LiDAR point density and landscape context on estimates of urban forest biomass. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101, 310-322.	11.1	77
33	Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution. Agricultural and Forest Meteorology, 2015, 209-210, 100-113.	4.8	68
34	Improving Pixel-Based Change Detection Accuracy Using an Object-Based Approach in Multitemporal SAR Flood Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 3486-3496.	4.9	62
35	Mapping burn severity in a disease-impacted forest landscape using Landsat and MASTER imagery. International Journal of Applied Earth Observation and Geoinformation, 2015, 40, 91-99.	2.8	18
36	Remote sensing and object-based techniques for mapping fine-scale industrial disturbances. International Journal of Applied Earth Observation and Geoinformation, 2015, 34, 51-57.	2.8	31

#	Article	IF	CITATIONS
37	Assessment of the image misregistration effects on object-based change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87, 19-27.	11.1	55
38	A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests. Remote Sensing Letters, 2014, 5, 723-732.	1.4	85
39	The influence of sampling density on geographically weighted regression: a case study using forest canopy height and optical data. International Journal of Remote Sensing, 2012, 33, 2909-2924.	2.9	24
40	How wetland type and area differ through scale: A GEOBIA case study in Alberta's Boreal Plains. Remote Sensing of Environment, 2012, 117, 135-145.	11.0	55
41	Lidar calibration and validation for geometric-optical modeling with Landsat imagery. Remote Sensing of Environment, 2012, 124, 384-393.	11.0	19
42	A GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: A case study in Quebec, Canada. International Journal of Applied Earth Observation and Geoinformation, 2012, 15, 28-37.	2.8	55
43	Lidar plots — a new large-area data collection option: context, concepts, and case study. Canadian Journal of Remote Sensing, 2012, 38, 600-618.	2.4	98
44	Object-based change detection. International Journal of Remote Sensing, 2012, 33, 4434-4457.	2.9	454
45	A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quickbird imagery. International Journal of Geographical Information Science, 2011, 25, 877-893.	4.8	55
46	Geospatial Technologies to Improve Urban Energy Efficiency. Remote Sensing, 2011, 3, 1380-1405.	4.0	35
47	A Support Vector Regression Approach to Estimate Forest Biophysical Parameters at the Object Level Using Airborne Lidar Transects and QuickBird Data. Photogrammetric Engineering and Remote Sensing, 2011, 77, 733-741.	0.6	44
48	An airborne lidar sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA. Remote Sensing of Environment, 2011, 115, 1532-1542.	11.0	43
49	Estimation of forest height, biomass and volume using support vector regression and segmentation from lidar transects and Quickbird imagery. , 2010 , , .		6
50	High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica. Science in China Series D: Earth Sciences, 2009, 52, 714-722.	0.9	11
51	Support vector machines for cloud detection over ice-snow areas. Geo-Spatial Information Science, 2007, 10, 117-120.	5.3	6