Janine Kirby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5969461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.	10.2	1,039
2	Pathological TDPâ€43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with <i>SOD1</i> mutations. Annals of Neurology, 2007, 61, 427-434.	5.3	840
3	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
4	Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nature Reviews Neurology, 2011, 7, 616-630.	10.1	512
5	Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain, 2012, 135, 751-764.	7.6	293
6	Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain, 2014, 137, 2040-2051.	7.6	253
7	Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS). PLoS ONE, 2010, 5, e9872.	2.5	204
8	The C9ORF72 expansion mutation is a common cause of ALS+/â^'FTD in Europe and has a single founder. European Journal of Human Genetics, 2013, 21, 102-108.	2.8	201
9	Gene expression profiling in human neurodegenerative disease. Nature Reviews Neurology, 2012, 8, 518-530.	10.1	183
10	Microarray Analysis of the Cellular Pathways Involved in the Adaptation to and Progression of Motor Neuron Injury in the SOD1 G93A Mouse Model of Familial ALS. Journal of Neuroscience, 2007, 27, 9201-9219.	3.6	179
11	Dysregulation of astrocyte–motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain, 2011, 134, 2627-2641.	7.6	176
12	Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain, 2005, 128, 1686-1706.	7.6	170
13	Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Frontiers in Cellular Neuroscience, 2013, 7, 178.	3.7	167
14	The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathologica, 2014, 127, 333-345.	7.7	150
15	Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathologica, 2015, 130, 63-75.	7.7	149
16	Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathologica, 2011, 122, 657-671.	7.7	134
17	Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathologica, 2013, 125, 95-109.	7.7	133
18	ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Human Molecular Genetics, 2013, 22, 3690-3704.	2.9	130

#	Article	IF	CITATIONS
19	Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	129
20	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
21	Clinical features of hereditary spastic paraplegia due to spastin mutation. Neurology, 2006, 67, 45-51.	1.1	118
22	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	5.3	118
23	Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiology of Aging, 2017, 55, 123-131.	3.1	117
24	Novel FUS/TLS Mutations and Pathology in Familial and Sporadic Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 455-61.	4.5	113
25	SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nature Communications, 2017, 8, 16063.	12.8	106
26	Analysis of the Cytosolic Proteome in a Cell Culture Model of Familial Amyotrophic Lateral Sclerosis Reveals Alterations to the Proteasome, Antioxidant Defenses, and Nitric Oxide Synthetic Pathways. Journal of Biological Chemistry, 2003, 278, 6371-6383.	3.4	103
27	Loss of nuclear <scp>TDP</scp> â€43 in amyotrophic lateral sclerosis (<scp>ALS</scp>) causes altered expression of splicing machinery and widespread dysregulation of <scp>RNA</scp> splicing in motor neurones. Neuropathology and Applied Neurobiology, 2014, 40, 670-685.	3.2	98
28	Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 404-413.	1.7	84
29	C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis. PLoS ONE, 2015, 10, e0127376.	2.5	83
30	Small RNA Sequencing of Sporadic Amyotrophic Lateral Sclerosis Cerebrospinal Fluid Reveals Differentially Expressed miRNAs Related to Neural and Glial Activity. Frontiers in Neuroscience, 2017, 11, 731.	2.8	83
31	Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis. Neurogenetics, 2010, 11, 217-225.	1.4	79
32	Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxiaâ€response and <scp>RNA</scp> processing functions. Neuropathology and Applied Neurobiology, 2015, 41, 201-226.	3.2	73
33	Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain, 2011, 134, 506-517.	7.6	71
34	Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. Journal of Neurochemistry, 2004, 82, 1118-1128.	3.9	70
35	Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 510-518.	1.9	69
36	The genetics of amyotrophic lateral sclerosis: current insights. Degenerative Neurological and Neuromuscular Disease, 2016, 6, 49.	1.3	65

#	Article	IF	CITATIONS
37	A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2017, 5, 23.	5.2	63
38	Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 344-350.	1.7	62
39	ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiology of Aging, 2018, 71, 266.e1-266.e10.	3.1	59
40	Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselen. Brain, 2006, 129, 1693-1709.	7.6	57
41	Concurrence of multiple sclerosis and amyotrophic lateral sclerosis in patients with hexanucleotide repeat expansions of <i>C9ORF72</i> . Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 79-87.	1.9	57
42	<i>C9ORF72</i> expansions, parkinsonism, and Parkinson disease. Neurology, 2013, 81, 808-811.	1.1	57
43	Mutations in the Glycosyltransferase Domain of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. Cell Reports, 2019, 26, 2298-2306.e5.	6.4	57
44	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 448-460.e4.	8.1	56
45	S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2013, 61, 438-452.	2.9	54
46	Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation. Molecular Neurodegeneration, 2013, 8, 12.	10.8	52
47	Invited Review: Decoding the pathophysiological mechanisms that underlie <scp>RNA</scp> dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathology and Applied Neurobiology, 2015, 41, 109-134.	3.2	47
48	The Spectrum of C9orf72-mediated Neurodegeneration and Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2015, 12, 326-339.	4.4	46
49	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
50	New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics, 2009, 10, 105-110.	1.4	42
51	Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine, 2020, 59, 102844.	6.1	41
52	Transcriptional response of the neuromuscular system to exercise training and potential implications for ALS. Journal of Neurochemistry, 2009, 109, 1714-1724.	3.9	37
53	Oligodendrocyte pathology exceeds axonal pathology in white matter in human amyotrophic lateral sclerosis. Journal of Pathology, 2020, 251, 262-271.	4.5	37
54	Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Frontiers in Cellular Neuroscience, 2015, 9, 410.	3.7	36

#	Article	IF	CITATIONS
55	Oligogenic inheritance of optineurin (<i>OPTN</i>) and <i>C9ORF72</i> mutations in ALS highlights localisation of OPTN in the TDPâ€43â€negative inclusions of <i>C9ORF72</i> â€ALS. Neuropathology, 2016, 36, 125-134.	1.2	35
56	Development and Testing of a Cognitive Behavioral Therapy Resource for Children's Dental Anxiety. JDR Clinical and Translational Research, 2017, 2, 23-37.	1.9	34
57	Prognostic Factors for Relapse and Pelvic Lymph Node Metastases in Early Stage I Adenocarcinoma of the Cervix. Gynecologic Oncology, 1999, 74, 423-427.	1.4	32
58	Mutation screening of manganese superoxide dismutase in amyotrophic lateral sclerosis. NeuroReport, 2001, 12, 2319-2322.	1.2	32
59	Gene Expression Assays. Advances in Clinical Chemistry, 2007, 44, 247-292.	3.7	32
60	Multifaceted Genes in Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Frontiers in Neuroscience, 2020, 14, 684.	2.8	32
61	Differential gene expression in a cell culture model of SOD1-related familial motor neurone disease. Human Molecular Genetics, 2002, 11, 2061-2075.	2.9	31
62	Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Communications, 2022, 4, fcac029.	3.3	29
63	No association with common Caucasian genotypes in exons 8, 13 and 14 of the human cytoplasmic dynein heavy chain gene (DNCHC1) and familial motor neuron disorders. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2003, 4, 150-157.	1.2	26
64	<i>C9ORF72</i> transcription in a frontotemporal dementia case with two expanded alleles. Neurology, 2013, 81, 1719-1721.	1.1	25
65	Comparison of Blood RNA Extraction Methods Used for Gene Expression Profiling in Amyotrophic Lateral Sclerosis. PLoS ONE, 2014, 9, e87508.	2.5	25
66	Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype. Frontiers in Molecular Neuroscience, 2017, 10, 370.	2.9	24
67	Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene. Cell Reports, 2020, 33, 108456.	6.4	24
68	Investigating cell death mechanisms in amyotrophic lateral sclerosis using transcriptomics. Frontiers in Cellular Neuroscience, 2013, 7, 259.	3.7	23
69	C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten. Human Molecular Genetics, 2017, 26, 1133-1145.	2.9	23
70	Machine perfusion for kidneys: how to do it at minimal cost. Transplant International, 2001, 14, 103-107.	1.6	22
71	Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes. Neurobiology of Aging, 2015, 36, 2006.e1-2006.e9.	3.1	22
72	Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 593-599.	1.7	22

#	Article	IF	CITATIONS
73	<i>HSP60</i> IS A RARE CAUSE OF HEREDITARY SPASTIC PARAPARESIS, BUT MAY ACT AS A GENETIC MODIFIER. Neurology, 2008, 70, 1717-1718.	1.1	21
74	The CHCHD10 P34S variant is not associated with ALS in a UK cohort of familial and sporadic patients. Neurobiology of Aging, 2015, 36, 2908.e17-2908.e18.	3.1	19
75	The involvement of regulatory T cells in amyotrophic lateral sclerosis and their therapeutic potential. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 435-444.	1.7	19
76	Brain Iron Dysregulation and the Risk of Ageing White Matter Lesions. NeuroMolecular Medicine, 2011, 13, 289-299.	3.4	18
77	TDP43 proteinopathy is associated with aberrant DNA methylation in human amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology, 2021, 47, 61-72.	3.2	18
78	Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Communications, 2021, 3, fcab141.	3.3	17
79	Striking phenotypic variation in a family with the P506S UBQLN2 mutation including amyotrophic lateral sclerosis, spastic paraplegia, and frontotemporal dementia. Neurobiology of Aging, 2019, 73, 229.e5-229.e9.	3.1	16
80	Screening of the regulatory and coding regions of vascular endothelial growth factor in amyotrophic lateral sclerosis. Neurogenetics, 2005, 6, 101-104.	1.4	15
81	Lack of unique neuropathology in amyotrophic lateral sclerosis associated with <scp>p.K54E</scp> angiogenin (<scp><i>ANG</i></scp>) mutation. Neuropathology and Applied Neurobiology, 2013, 39, 562-571.	3.2	14
82	Children's experiences following a CBT intervention to reduce dental anxiety: one year on. British Dental Journal, 2018, 225, 247-251.	0.6	12
83	Neuropathological characterization of a novel TANK binding kinase (TBK1) gene loss of function mutation associated with amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology, 2020, 46, 279-291.	3.2	12
84	MUTATIONS IN VAPB ARE NOT ASSOCIATED WITH SPORADIC ALS. Neurology, 2007, 68, 1951-1953.	1.1	10
85	<i>HFE</i> H63D, C282Y and <i>ACTR1</i> A1166C Polymorphisms and Brain White Matter Lesions in the Aging Brain. Journal of Neurogenetics, 2011, 25, 7-14.	1.4	10
86	Intermediate length C9orf72 expansion in an ALS patient without classical C9orf72 neuropathology. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 249-251.	1.7	8
87	Motor neurone disease/amyotrophic lateral sclerosis associated with intermediateâ€length <scp>CAG</scp> repeat expansions in <scp><i>Ataxinâ€2</i></scp> does not have 1 <scp>C</scp> 2â€positive polyglutamine inclusions. Neuropathology and Applied Neurobiology, 2016, 42, 377-389.	3.2	7
88	Common Themes in the Pathogenesis of Neurodegeneration. , 2016, , 1-12.		4
89	Genome-Wide Analyses Identify KIF5A as a Novel ALS Gene. SSRN Electronic Journal, 0, , .	0.4	4
90	The Association between Polygenic Hazard and Markers of Alzheimer's Disease Following Stratification for APOE Genotype. Current Alzheimer Research, 2020, 17, 667-679.	1.4	2

#	Article	IF	CITATIONS
91	Neurodegeneration caused by intronic expansions of C9ORF72 is a clinically heterogeneous but pathologically distinct disease. Lancet, The, 2013, 381, S32.	13.7	1
92	159â€Dysregulation of the cross-talk with astrocytes as a contributory factor to motor neuron injury in motor neuron disease. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, e1.115-e1.	1.9	0
93	Genetics of Familial Amyotrophic Lateral Sclerosis. , 2012, , .		0
94	Insights Arising from Gene Expression Profiling in Amyotrophic Lateral Sclerosis. , 0, , .		0
95	AMYOTROPHIC LATERAL SCLEROSIS ASSOCIATED WITH AN INTERMEDIATE LENGTH GGGGCC REPEAT EXPANSION HAS DISTINCT NEUROPATHOLOGY COMPARED TO PATIENTS WITH LARGER EXPANSIONS. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.130-e4.	1.9	0