
Babasaheb R Sankapal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5967759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy, 2015, 11, 377-399.	16.0	437
2	Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V 2 O 5 complex surface architecture. Electrochimica Acta, 2017, 242, 382-389.	5.2	156
3	V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendable highly stabilized energy efficient supercapacitor device. Scientific Reports, 2017, 7, 43430.	3.3	148
4	MoS ₂ ultrathin nanoflakes for high performance supercapacitors: room temperature chemical bath deposition (CBD). RSC Advances, 2016, 6, 39159-39165.	3.6	123
5	First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction: Approach towards solid-state symmetric supercapacitor device. Electrochimica Acta, 2016, 198, 203-211.	5.2	118
6	Synthesis and characterization of anatase-TiO2 thin films. Applied Surface Science, 2005, 239, 165-170.	6.1	117
7	Hexagonal VS ₂ Anchored MWCNTs: First Approach to Design Flexible Solid-State Symmetric Supercapacitor Device. ACS Applied Materials & Interfaces, 2017, 9, 44880-44891.	8.0	111
8	Novel chemical route for CeO2/MWCNTs composite towards highly bendable solid-state supercapacitor device. Scientific Reports, 2019, 9, 5892.	3.3	105
9	Preparation of nanocrystalline ZnS by a new chemical bath deposition route. Thin Solid Films, 2005, 480-481, 168-172.	1.8	101
10	Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method. Materials Research Bulletin, 2000, 35, 177-184.	5.2	97
11	Wide band gap p-type windows by CBD and SILAR methods. Thin Solid Films, 2004, 451-452, 128-132.	1.8	96
12	Successive ionic layer adsorption and reaction (SILAR) method for the deposition of large area (â^¼10) Tj ETQq0	00rgBT/	Overlock 10
13	First report on a FeS-based 2 V operating flexible solid-state symmetric supercapacitor device. Sustainable Energy and Fuels, 2017, 1, 1366-1375.	4.9	77
14	Two dimensional cryptomelane like growth of MoSe 2 over MWCNTs: Symmetric all-solid-state supercapacitor. Journal of Electroanalytical Chemistry, 2017, 802, 131-138.	3.8	77
15	Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure. Journal of Energy Chemistry, 2019, 31, 79-88.	12.9	77
16	Photoelectrochemical cells based on chemically deposited nanocrystalline Bi2S3 thin films. Materials Chemistry and Physics, 1999, 60, 196-203.	4.0	74

17	Comparative studies on MWCNTs, Fe ₂ O ₃ and Fe ₂ O ₃ /MWCNTs thin films towards supercapacitor application. New Journal of Chemistry, 2016, 40, 2619-2627.	2.8	72

18Preparation and characterization of nanocrystalline CdSe thin films deposited by SILAR method.4.069Materials Chemistry and Physics, 2003, 78, 11-14.4.069

#	Article	IF	CITATIONS
19	Controlled synthesis of ZnO nanostructures with assorted morphologies via simple solution chemistry. Journal of Alloys and Compounds, 2013, 551, 233-242.	5.5	69
20	Electroless-deposited Ag nanoparticles for highly stable energy-efficient electrochemical supercapacitor. Journal of Alloys and Compounds, 2017, 726, 1295-1303.	5.5	68
21	Materials Mutualism through EDLC-Behaved MWCNTs with Pseudocapacitive MoTe ₂ Nanopebbles: Enhanced Supercapacitive Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 15072-15082.	6.7	66
22	Metal phosphides: topical advances in the design of supercapacitors. Journal of Materials Chemistry A, 2021, 9, 20241-20276.	10.3	66
23	Ultrathin Cu2P2O7 nanoflakes on stainless steel substrate for flexible symmetric all-solid-state supercapacitors. Chemical Engineering Journal, 2021, 422, 130131.	12.7	66
24	Room temperature PEDOT:PSS encapsulated MWCNTs thin film for electrochemical supercapacitor. Journal of Electroanalytical Chemistry, 2016, 771, 80-86.	3.8	63
25	Electrochemical approach of chemically synthesized HgS nanoparticles as supercapacitor electrode. Materials Letters, 2017, 209, 97-101.	2.6	63
26	Presenting highest supercapacitance for TiO2/MWNTs nanocomposites: Novel method. Chemical Engineering Journal, 2014, 247, 103-110.	12.7	62
27	One-dimensional cadmium hydroxide nanowires towards electrochemical supercapacitor. New Journal of Chemistry, 2015, 39, 9124-9131.	2.8	62
28	Free-standing flexible MWCNTs bucky paper: Extremely stable and energy efficient supercapacitive electrode. Electrochimica Acta, 2017, 249, 395-403.	5.2	62
29	Vanadium telluride nanoparticles on MWCNTs prepared by successive ionic layer adsorption and reaction for solid-state supercapacitor. Chemical Engineering Journal, 2022, 429, 132505.	12.7	62
30	Preparation and characterization of Bi2Se3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method. Materials Chemistry and Physics, 2000, 63, 230-234.	4.0	61
31	XRD, SEM, AFM, HRTEM, EDAX and RBS studies of chemically deposited Sb2S3 and Sb2Se3 thin films. Applied Surface Science, 2002, 193, 1-10.	6.1	60
32	Highly conductive energy efficient electroless anchored silver nanoparticles on MWCNTs as a supercapacitive electrode. New Journal of Chemistry, 2017, 41, 10808-10814.	2.8	60
33	Chemically deposited Bi2S3:PbS solid solution thin film as supercapacitive electrode. Journal of Colloid and Interface Science, 2017, 505, 1011-1017.	9.4	59
34	Some structural studies on successive ionic layer adsorption and reaction (SILAR)-deposited CdS thin films. Applied Surface Science, 2001, 181, 277-282.	6.1	58
35	Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application. Journal of Alloys and Compounds, 2012, 510, 33-37.	5.5	57
36	Zinc Oxide Encapsulated Carbon Nanotube Thin Films for Energy Storage Applications. Electrochimica Acta, 2016, 192, 377-384.	5.2	57

#	Article	IF	CITATIONS
37	A chemical method for the deposition of Bi2S3 thin films from a non-aqueous bath. Thin Solid Films, 2000, 359, 136-140.	1.8	56
38	TiO2 and TiO2–SiO2 thin films and powders by one-step soft-solution method: Synthesis and characterizations. Solar Energy Materials and Solar Cells, 2006, 90, 1533-1541.	6.2	55
39	Facile chemical route for multiwalled carbon nanotube/mercury sulfide nanocomposite: High performance supercapacitive electrode. Journal of Colloid and Interface Science, 2018, 514, 740-749.	9.4	55
40	Facile SILAR Processed Bi ₂ S ₃ :PbS Solid Solution on MWCNTs for Highâ€performance Electrochemical Supercapacitor. Chinese Journal of Chemistry, 2019, 37, 1279-1286.	4.9	54
41	Thickness dependent properties of chemically deposited As2S3 thin films from thioacetamide bath. Materials Chemistry and Physics, 2000, 64, 215-221.	4.0	50
42	Decoration of Ultrathin MoS ₂ Nanoflakes over MWCNTs: Enhanced Supercapacitive Performance through Electrode to Symmetric Allâ€Solidâ€State Device. ChemistrySelect, 2017, 2, 10405-10412.	1.5	50
43	Vanadium oxide anchored MWCNTs nanostructure for superior symmetric electrochemical supercapacitors. Materials and Design, 2019, 182, 107972.	7.0	50
44	Photoelectrochemical (PEC) characterization of chemically deposited Bi2S3 thin films from non-aqueous medium. Materials Chemistry and Physics, 1999, 60, 158-162.	4.0	49
45	A novel method for the deposition of nanocrystalline Bi2Se3, Sb2Se3 and Bi2Se3–Sb2Se3 thin films — SILAR. Applied Surface Science, 2001, 182, 413-417.	6.1	49
46	SILAR coated Bi2S3 nanoparticles on vertically aligned ZnO nanorods: Synthesis and characterizations. Ceramics International, 2015, 41, 10394-10399.	4.8	49
47	Studies on photoelectrochemical (PEC) cell formed with SILAR deposited Bi2Se3–Sb2Se3 multilayer thin films. Solar Energy Materials and Solar Cells, 2001, 69, 43-52.	6.2	48
48	Structural characterization of chemically deposited Bi2S3 and Bi2Se3 thin films. Applied Surface Science, 2002, 187, 108-115.	6.1	48
49	A new chemical method for the preparation of Ag2S thin films. Materials Chemistry and Physics, 2000, 63, 226-229.	4.0	47
50	Preparation and characterization of Bi2S3 thin films using modified chemical bath deposition method. Materials Research Bulletin, 2001, 36, 199-210.	5.2	47
51	Characterization of p-Cul prepared by the SILAR technique on Cu-tape/n-CuInS2 for solar cells. Thin Solid Films, 2005, 480-481, 142-146.	1.8	47
52	Photoelectrochemical characterization of Bi2Se3 thin films deposited by SILAR technique. Materials Chemistry and Physics, 2002, 73, 151-155.	4.0	46
53	Electrical properties of air-stable, iodine-doped carbon-nanotube–polymer composites. Applied Physics Letters, 2007, 91, 173103.	3.3	46
54	Sb2S3 nanoparticles through solution chemistry on mesoporous TiO2 for solar cell application. Chemical Physics Letters, 2012, 554, 150-154.	2.6	45

#	Article	IF	CITATIONS
55	Chemical and electrochemical synthesis of nanosized TiO2 anatase for large-area photon conversion. Comptes Rendus Chimie, 2006, 9, 702-707.	0.5	44
56	Non-aqueous chemical bath deposition of Sb2S3 thin films. Thin Solid Films, 1999, 353, 29-32.	1.8	43
57	Studies on chemically deposited nanocrystalline Bi2S3 thin films. Materials Research Bulletin, 2000, 35, 587-601.	5.2	43
58	Photoelectrochemical investigation of Ag2S thin films deposited by SILAR method. Materials Chemistry and Physics, 2001, 72, 105-108.	4.0	42
59	Anchoring cobalt oxide nanoparticles on to the surface multiwalled carbon nanotubes for improved supercapacitive performances. RSC Advances, 2015, 5, 48426-48432.	3.6	42
60	Solution processed nanostructured cerium oxide electrode: Electrochemical engineering towards solid-state symmetric supercapacitor device. Journal of Electroanalytical Chemistry, 2019, 839, 96-107.	3.8	42
61	SILAR deposited Bi 2 S 3 thin film towards electrochemical supercapacitor. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 209-212.	2.7	41
62	Zinc Ferrite Anchored Multiwalled Carbon Nanotubes for Highâ€Performance Supercapacitor Applications. European Journal of Inorganic Chemistry, 2018, 2018, 137-142.	2.0	41
63	Chemical synthesis of Cd-free wide band gap materials for solar cells. Solar Energy Materials and Solar Cells, 2004, 83, 447-458.	6.2	40
64	CdS nanowires with PbS nanoparticles surface coating as room temperature liquefied petroleum gas sensor. Sensors and Actuators A: Physical, 2014, 216, 78-83.	4.1	40
65	Cerium Selenide Nanopebble/Multiwalled Carbon Nanotube Composite Electrodes for Solid-State Symmetric Supercapacitors. ACS Applied Nano Materials, 2022, 5, 3007-3017.	5.0	40
66	Synthesis of interconnected needle-like Bi2O3 using successive ionic layer adsorption and reaction towards supercapacitor application. Ionics, 2017, 23, 1831-1837.	2.4	39
67	Two-Dimensional Hexagonal SnSe Nanosheets as Binder-Free Electrode Material for High-Performance Supercapacitors. IEEE Transactions on Power Electronics, 2020, 35, 11344-11351.	7.9	39
68	Influence of processing parameters on chemically grown ZnO films with low cost Eosin-Y dye towards efficient dye sensitized solar cell. Solar Energy, 2014, 105, 445-454.	6.1	38
69	The electrochemical kinetics of cerium selenide nano-pebbles: the design of a device-grade symmetric configured wide-potential flexible solid-state supercapacitor. Nanoscale Advances, 2021, 3, 1057-1066.	4.6	38
70	Cationic-exchange approach for conversion of two dimensional CdS to two dimensional Ag ₂ S nanowires with an intermediate core–shell nanostructure towards supercapacitor application. New Journal of Chemistry, 2016, 40, 10144-10152.	2.8	37
71	Effect of annealing on chemically deposited Bi2Se3–Sb2Se3 composite thin films. Materials Chemistry and Physics, 2002, 74, 126-133.	4.0	36
72	p-PEDOT:PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature. Journal of Alloys and Compounds, 2012, 515, 80-85.	5.5	35

#	Article	IF	CITATIONS
73	Porous zinc cobaltite (ZnCo2O4) film by successive ionic layer adsorption and reaction towards solid-state symmetric supercapacitive device. Journal of Colloid and Interface Science, 2017, 487, 201-208.	9.4	35
74	Core-shell cadmium sulphide @ silver sulphide nanowires surface architecture: Design towards photoelectrochemical solar cells. Journal of Colloid and Interface Science, 2021, 587, 715-726.	9.4	35
75	Title is missing!. Journal of Materials Science Letters, 1999, 18, 1453-1455.	0.5	34
76	Combined electrochemical and DFT investigations of iron selenide: a mechanically bendable solid-state symmetric supercapacitor. Sustainable Energy and Fuels, 2021, 5, 5001-5012.	4.9	34
77	Light-induced electrochemical performance of 3D- CdS nanonetwork: Effect of annealing. Electrochimica Acta, 2016, 222, 100-107.	5.2	33
78	Vertically aligned TiO2 nanotubes: Highly stable electrochemical supercapacitor. Journal of Electroanalytical Chemistry, 2016, 780, 197-200.	3.8	32
79	CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor. Materials Chemistry and Physics, 2017, 191, 168-172.	4.0	32
80	CdO nanonecklace: Effect of air annealing on performance of photo electrochemical cell. Journal of Alloys and Compounds, 2019, 788, 75-82.	5.5	32
81	Nanocrystalline p-type-cuprous oxide thin films by room temperature chemical bath deposition method. Journal of Alloys and Compounds, 2011, 509, 5551-5554.	5.5	31
82	Straightening of chemically deposited CdS nanowires through annealing towards improved PV device performance. Ceramics International, 2016, 42, 6682-6691.	4.8	31
83	Nanoheterojunction through PbS nanoparticles anchored CdS nanowires towards solar cell application. International Journal of Hydrogen Energy, 2019, 44, 7095-7107.	7.1	31
84	CdS surface encapsulated ZnO nanorods: Synthesis to solar cell application. Journal of Alloys and Compounds, 2016, 689, 394-400.	5.5	30
85	LPG sensor based on complete inorganic n-Bi ₂ S ₃ -p-CuSCN heterojunction synthesized by a simple chemical route. Journal Physics D: Applied Physics, 2010, 43, 245302.	2.8	28
86	SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect. Journal of Colloid and Interface Science, 2018, 524, 148-155.	9.4	28
87	Enhanced field emission properties of V2O5/MWCNTs nanocomposite. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	27
88	Novel application of non-aqueous chemical bath deposited Sb2S3 thin films as supercapacitive electrode. International Journal of Hydrogen Energy, 2016, 41, 21278-21285.	7.1	26
89	Wet chemical synthesis of ZnO thin films and sensitization to light with N3 dye for solar cell application. Journal Physics D: Applied Physics, 2009, 42, 125108.	2.8	25
90	PEDOT:PSS shell on CdS nanowires: Room temperature LPG sensor. Journal of Alloys and Compounds, 2014, 592, 1-5.	5.5	25

#	Article	IF	CITATIONS
91	1-D electron path of 3-D architecture consisting of dye loaded CdS nanowires: Dye sensitized solar cell. Journal of Alloys and Compounds, 2015, 651, 399-404.	5.5	24
92	Solution-processed CdS quantum dots on TiO ₂ : light-induced electrochemical properties. RSC Advances, 2016, 6, 83175-83184.	3.6	24
93	Facile fabrication of CdS/CdSe core–shell nanowire heterostructure for solar cell applications. New Journal of Chemistry, 2017, 41, 5808-5817.	2.8	24
94	Photoelectrochemical characterization of chemically deposited (CdS)X(Bi2S3)1â^'X composite thin films. Materials Chemistry and Physics, 2001, 72, 48-55.	4.0	22
95	Cactus architecture of ZnO nanoparticles network through simple wet chemistry: Efficient dye sensitized solar cells. Materials Letters, 2014, 116, 91-93.	2.6	22
96	Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy. Amino Acids, 2015, 47, 757-765.	2.7	22
97	"Basic idea, advance approachâ€+ Efficiency boost by sensitization of blended dye on chemically deposited ZnO films. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 318, 135-141.	3.9	22
98	Flexible iron-doped Sr(OH)2 fibre wrapped tuberose for high-performance supercapacitor electrode. Journal of Alloys and Compounds, 2019, 781, 831-841.	5.5	22
99	Synthesis of pyridine derivatives and their influence as additives on the photocurrent of dye-sensitized solar cells. Journal of Applied Electrochemistry, 2009, 39, 147-154.	2.9	21
100	Room temperature chemical synthesis of highly oriented PbSe nanotubes based on negative free energy of formation. Journal of Alloys and Compounds, 2011, 509, 10066-10069.	5.5	21
101	Pseudocapacitive behavior of unidirectional CdS nanoforest in 3D architecture through solution chemistry. Chemical Physics Letters, 2016, 659, 105-111.	2.6	21
102	The n-Bi2S3/p-PbS heterojunction for room temperature LPG sensors. Sensors and Actuators A: Physical, 2017, 267, 187-193.	4.1	21
103	Synthesis and characterization of polypyrrole and its application for solar cell. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	21
104	First report on solution processed α-Ce2S3 rectangular microrods: An efficient energy storage supercapacitive electrode. Journal of Colloid and Interface Science, 2019, 535, 169-175.	9.4	21
105	Multiâ€walled carbon nanotubes supported copper phosphate microflowers for flexible solidâ€state supercapacitor. International Journal of Energy Research, 2022, 46, 6177-6196.	4.5	21
106	Linker free synthesis of TiO2/Bi2S3 heterostructure towards solar cell application: Facile chemical routes. Materials Science in Semiconductor Processing, 2015, 30, 335-342.	4.0	20
107	Spongy nano surface architecture of chemically grown BiVO4: High-capacitance retentive electrochemical supercapacitor. International Journal of Hydrogen Energy, 2021, 46, 25586-25595.	7.1	20
108	PbS nanoparticles anchored 1D- CdSe nanowires: Core-shell design towards energy storage supercapacitor application. Journal of Alloys and Compounds, 2022, 906, 164323.	5.5	20

#	Article	IF	CITATIONS
109	Cu(OH)2@Cd(OH)2 core-shell nanostructure: Synthesis to supercapacitor application. Thin Solid Films, 2019, 692, 137584.	1.8	19
110	Tuberose surface architecture of Sr(OH)2 film as supercapacitive electrode. Electrochimica Acta, 2017, 258, 34-42.	5.2	18
111	Synthesis of nickel hydroxide/reduced graphene oxide composite thin films for water splitting application. International Journal of Energy Research, 2020, 44, 10908-10916.	4.5	18
112	Prototype symmetric configured MWCNTs/Fe2O3 based solid-state supercapacitor. Synthetic Metals, 2021, 271, 116629.	3.9	18
113	Widening potential window of flexible solid-state supercapacitor through asymmetric configured iron oxide and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate coated multi-walled carbon nanotubes assembly. Journal of Energy Storage, 2020, 31, 101622.	8.1	16
114	Preparation of CdCr2S4 and HgCr2S4 thin films by chemical bath deposition. Materials Research Bulletin, 1999, 34, 2035-2042.	5.2	15
115	Decoration of CdS nanoparticles on MWCNT's by simple solution chemistry. Applied Surface Science, 2012, 258, 7536-7539.	6.1	15
116	Mixed phase FeTe: Fe2TeO5 nanopebbles through solution chemistry: Electrochemical supercapacitor application. Ceramics International, 2022, 48, 137-147.	4.8	15
117	MoS2 nanoflakes anchored MWCNTs: Counter electrode in dye-sensitized solar cell. Inorganic Chemistry Communication, 2021, 132, 108827.	3.9	15
118	Nested CdS@HgS core–shell nanowires as supercapacitive Faradaic electrode through simple solution chemistry. Nano Structures Nano Objects, 2017, 10, 159-166.	3.5	14
119	Synthesis of metal free organic dyes: Experimental and theoretical approach to sensitize one-dimensional cadmium sulphide nanowires for solar cell application. Journal of Molecular Liquids, 2021, 336, 116862.	4.9	14
120	Process optimization for decoration of Bi2Se3 nanoparticles on CdS nanowires: Twofold power conversion solar cell efficiency. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104251.	5.3	14
121	Carbon Nanotube-Functionalized Surface-Assisted Growth of Cobalt Phosphate Nanodots: A Highly Stable and Bendable All-Solid-State Symmetric Supercapacitor. Energy & Fuels, 2022, 36, 5953-5964.	5.1	14
122	Role of polyaniline thickness in polymer-zinc oxide based solid state solar cell. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 244, 23-28.	3.5	13
123	Web-analogues one-dimensional iron hydroxide@cadmium hydroxide nanostructure: electrochemical supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 22472-22480.	2.2	13
124	Aligned 2D CuSCN nanosheets: a high performance field emitter. RSC Advances, 2016, 6, 71958-71962.	3.6	12
125	ZnO/CuSCN Nano-Heterostructure as a Highly Efficient Field Emitter: a Combined Experimental and Theoretical Investigation. ACS Omega, 2020, 5, 6715-6724.	3.5	12
126	Facile Bi2S3 nanoparticles on CdS nanowires surface: Core-shell nanostructured design towards solar cell application. Surfaces and Interfaces, 2021, 27, 101457.	3.0	12

#	Article	IF	CITATIONS
127	Pseudocapacitive nanostructured silver selenide thin film through room temperature chemical route: First approach towards supercapacitive application. Inorganic Chemistry Communication, 2022, 135, 109083.	3.9	12
128	Synthesis and characterization of AgI thin films at low temperature. Journal of Alloys and Compounds, 2010, 506, 268-270.	5.5	11
129	Aggregation induced emission (AIE) materials based on diketopyrrolopyrrole chromophore for CdS nanowire solar cell applications. Journal of Electroanalytical Chemistry, 2021, 895, 115451.	3.8	11
130	Nanonecklace of CdO through simple solution chemistry. Materials Science in Semiconductor Processing, 2016, 49, 81-83.	4.0	10
131	Reduced turn-on field through solution processed MoS2 nanoflakes anchored MWCNTs. Chemical Physics Letters, 2019, 723, 146-150.	2.6	9
132	Room temperature linker free growth of CdSe quantum dots on mesoporous TiO2: solar cell application. Ceramics International, 2015, 41, 3940-3946.	4.8	8
133	Influence of Cu on the Performance of Tuberose Architecture of Strontium Hydroxide Thin Film as a Supercapacitor Electrode. ChemElectroChem, 2018, 5, 4021-4028.	3.4	8
134	Process optimization of dip-coated MWCNTs thin-films: Counter electrode in dye sensitized solar cells. Journal of the Indian Chemical Society, 2021, 98, 100195.	2.8	8
135	Pyridine enhances the efficiency of 1D-CdS nanowire solar cells fabricated using novel organic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128500.	4.7	8
136	Chemically Processed Metal Oxides for Sensing Application: Heterojunction Room Temperature LPG Sensor. , 2021, , 765-805.		7
137	Sequential growth-controlled silver selenide nanoparticles embedded 1D-CdS nanowires: Heterostructure design to enhance power conversion efficiency. Journal of Physics and Chemistry of Solids, 2022, 163, 110576.	4.0	7
138	Facile synthesis of D–π–A structured dyes and their applications towards the cost effective fabrication of solar cells as well as sensing of hazardous Hg(<scp>ii</scp>). RSC Advances, 2016, 6, 106453-106464.	3.6	6
139	Efficiency enhancement of solidâ€state dye sensitized solar cell by <i>in situ</i> deposition of Cul. Surface and Interface Analysis, 2008, 40, 1393-1396.	1.8	5
140	Synthesis of D–D–A-type small organic molecules with an enlarged linker system towards organic solar cells and the effect of co-adsorbents on cell performance. New Journal of Chemistry, 2016, 40, 634-640.	2.8	5
141	Inverted organic solar cell with ultrasonic spray deposited active layer. Optik, 2017, 131, 1079-1084.	2.9	5
142	Anchoring of gold nanoparticles into aligned TiO2 nanotube: Improved supercapacitive performance. Nano Structures Nano Objects, 2019, 20, 100381.	3.5	5
143	Synthesis of spongy Mn nanoparticles by electroless reduction for solid-state flexible supercapacitor application. Journal of Alloys and Compounds, 2022, 922, 166238.	5.5	5
144	Fabrication and characterization of lead sulfide and multi-walled carbon nanotube based field effect transistors using low cost chemical route. Engineering Research Express, 2021, 3, 025016.	1.6	4

#	Article	IF	CITATIONS
145	Approach for fabricating JLT using chemically deposited cadmium sulphide and titanium dioxide. Micro and Nano Letters, 2019, 14, 1060-1063.	1.3	3
146	Dye-sensitized solar cells. , 2021, , 179-211.		3
147	The first report on SILAR deposited nanostructured uranyl sulphide thin films and their chemical conversion to silver sulphide. New Journal of Chemistry, 2015, 39, 8695-8702.	2.8	2