Robert J Wechsler-Reya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5967248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of Neuronal Precursor Proliferation in the Cerebellum by Sonic Hedgehog. Neuron, 1999, 22, 103-114.	8.1	1,228
2	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	27.8	761
3	Subtypes of medulloblastoma have distinct developmental origins. Nature, 2010, 468, 1095-1099.	27.8	710
4	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	16.8	627
5	Medulloblastoma Can Be Initiated by Deletion of Patched in Lineage-Restricted Progenitors or Stem Cells. Cancer Cell, 2008, 14, 135-145.	16.8	606
6	Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature, 2017, 543, 122-125.	27.8	530
7	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	27.8	520
8	The Developmental Biology of Brain Tumors. Annual Review of Neuroscience, 2001, 24, 385-428.	10.7	446
9	Isolation of neural stem cells from the postnatal cerebellum. Nature Neuroscience, 2005, 8, 723-729.	14.8	435
10	MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell, 2017, 31, 270-285.	16.8	406
11	Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 2014, 510, 537-541.	27.8	378
12	N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nature Neuroscience, 2018, 21, 195-206.	14.8	317
13	BET Bromodomain Inhibition of <i>MYC</i> -Amplified Medulloblastoma. Clinical Cancer Research, 2014, 20, 912-925.	7.0	296
14	Resolving medulloblastoma cellular architecture by single-cell genomics. Nature, 2019, 572, 74-79.	27.8	273
15	An Animal Model of MYC-Driven Medulloblastoma. Cancer Cell, 2012, 21, 155-167.	16.8	267
16	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
17	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
18	Loss of <i>patched</i> and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development (Cambridge), 2005, 132, 2425-2439.	2.5	223

#	Article	IF	CITATIONS
19	HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC- Driven Medulloblastoma. Cancer Cell, 2016, 29, 311-323.	16.8	204
20	Evidence that haploinsufficiency ofPtch leads to medulloblastoma in mice. Genes Chromosomes and Cancer, 2000, 28, 77-81.	2.8	136
21	Recurrent noncoding U1ÂsnRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature, 2019, 574, 707-711.	27.8	129
22	Zika Virus Targets Glioblastoma Stem Cells through a SOX2-Integrin αvβ5 Axis. Cell Stem Cell, 2020, 26, 187-204.e10.	11.1	126
23	WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development (Cambridge), 2012, 139, 1724-1733.	2.5	115
24	The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehogâ^'driven medulloblastoma. Nature Medicine, 2014, 20, 1035-1042.	30.7	110
25	A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nature Neuroscience, 2013, 16, 1737-1744.	14.8	100
26	Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma. Clinical Cancer Research, 2016, 22, 582-595.	7.0	88
27	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	28.9	85
28	Medulloblastoma: From Molecular Subgroups to Molecular Targeted Therapies. Annual Review of Neuroscience, 2018, 41, 207-232.	10.7	85
29	Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumourÂcells. Nature Cell Biology, 2016, 18, 418-430.	10.3	59
30	Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Science Signaling, 2018, 11, .	3.6	59
31	CXCR4 Activation Defines a New Subgroup of Sonic Hedgehog–Driven Medulloblastoma. Cancer Research, 2012, 72, 122-132.	0.9	58
32	N-myc alters the fate of preneoplastic cells in a mouse model of medulloblastoma. Genes and Development, 2009, 23, 157-170.	5.9	57
33	Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. Nature Communications, 2019, 10, 332.	12.8	55
34	Brain Tumor Stem Cells Remain in Play. Journal of Clinical Oncology, 2017, 35, 2428-2431.	1.6	54
35	Molecular mechanisms and therapeutic targets in pediatric brain tumors. Science Signaling, 2017, 10, .	3.6	53
36	Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like Kinases. Cancer Research, 2013, 73, 6310-6322.	0.9	52

ROBERT J WECHSLER-REYA

#	Article	IF	CITATIONS
37	NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma. Cancer Cell, 2018, 33, 435-449.e6.	16.8	52
38	Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro-Oncology, 2022, 24, 273-286.	1.2	52
39	Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic. Journal of Medicinal Chemistry, 2016, 59, 3635-3649.	6.4	51
40	Humanized Stem Cell Models of Pediatric Medulloblastoma Reveal an Oct4/mTOR Axis that Promotes Malignancy. Cell Stem Cell, 2019, 25, 855-870.e11.	11.1	38
41	Functional Precision Medicine Identifies New Therapeutic Candidates for Medulloblastoma. Cancer Research, 2020, 80, 5393-5407.	0.9	38
42	Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma. Nature Communications, 2018, 9, 4121.	12.8	36
43	NeuroD1 Dictates Tumor Cell Differentiation in Medulloblastoma. Cell Reports, 2020, 31, 107782.	6.4	35
44	<i>Sleeping Beauty</i> Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors. Cancer Research, 2019, 79, 905-917.	0.9	33
45	The role of stem cells and progenitors in the genesis of medulloblastoma. Experimental Neurology, 2014, 260, 69-73.	4.1	30
46	Optical barcoding of PLGA for multispectral analysis of nanoparticle fate in vivo. Journal of Controlled Release, 2017, 253, 172-182.	9.9	28
47	Small-molecule screen reveals synergy of cell cycle checkpoint kinase inhibitors with DNA-damaging chemotherapies in medulloblastoma. Science Translational Medicine, 2021, 13, .	12.4	26
48	SnapShot: Medulloblastoma. Cancer Cell, 2014, 26, 940-940.e1.	16.8	24
49	The long noncoding RNA <i>lnc-HLX-2-7</i> is oncogenic in Group 3 medulloblastomas. Neuro-Oncology, 2021, 23, 572-585.	1.2	23
50	Analysis of Gene Expression in the Normal and Malignant Cerebellum. Endocrine Reviews, 2003, 58, 227-248.	6.7	23
51	Reduced chromatin binding of MYC is a key effect of HDAC inhibition in MYC amplified medulloblastoma. Neuro-Oncology, 2021, 23, 226-239.	1.2	22
52	The current landscape of immunotherapy for pediatric brain tumors. Nature Cancer, 2022, 3, 11-24.	13.2	21
53	Proteomic profiling of high risk medulloblastoma reveals functional biology. Oncotarget, 2015, 6, 14584-14595.	1.8	20
54	Myc and Loss of p53 Cooperate to Drive Formation of Choroid Plexus Carcinoma. Cancer Research, 2019, 79, 2208-2219.	0.9	15

#	Article	IF	CITATIONS
55	Lgr5 Marks Post-Mitotic, Lineage Restricted Cerebellar Granule Neurons during Postnatal Development. PLoS ONE, 2014, 9, e114433.	2.5	14
56	Preclinical Models Provide Scientific Justification and Translational Relevance for Moving Novel Therapeutics into Clinical Trials for Pediatric Cancer. Cancer Research, 2015, 75, 5176-5186.	0.9	14
57	Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Science Translational Medicine, 2022, 14, eabf3917.	12.4	13
58	Development of posaconazole-based analogues as hedgehog signaling pathway inhibitors. European Journal of Medicinal Chemistry, 2019, 163, 320-332.	5.5	12
59	Structure-based virtual screening identifies an 8-hydroxyquinoline as a small molecule GLI1 inhibitor. Molecular Therapy - Oncolytics, 2021, 20, 265-276.	4.4	10
60	KITlow Cells Mediate Imatinib Resistance in Gastrointestinal Stromal Tumor. Molecular Cancer Therapeutics, 2021, 20, 2035-2048.	4.1	10
61	For pediatric glioma, leave no histone unturned. Science, 2014, 346, 1458-1459.	12.6	9
62	Structure–Activity Relationships for Itraconazole-Based Triazolone Analogues as Hedgehog Pathway Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 3873-3885.	6.4	8
63	Synthesis and evaluation of third generation vitamin D3 analogues as inhibitors of Hedgehog signaling. European Journal of Medicinal Chemistry, 2019, 162, 495-506.	5.5	8
64	A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood, 2021, 137, 3403-3415.	1.4	8
65	Combined MEK and JAK/STAT3 pathway inhibition effectively decreases SHH medulloblastoma tumor progression. Communications Biology, 2022, 5, .	4.4	8
66	Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death and Differentiation, 2022, 29, 1596-1610.	11.2	7
67	Characterization of G-CSF receptor expression in medulloblastoma. Neuro-Oncology Advances, 2020, 2, vdaa062.	0.7	6
68	Depletion of kinesin motor KIF20A to target cell fate control suppresses medulloblastoma tumour growth. Communications Biology, 2021, 4, 552.	4.4	5
69	Integrated genome and tissue engineering enables screening of cancer vulnerabilities in physiologically relevant perfusable ex vivo cultures. Biomaterials, 2022, 280, 121276.	11.4	5
70	Nilotinib, an approved leukemia drug, inhibits smoothened signaling in Hedgehog-dependent medulloblastoma. PLoS ONE, 2019, 14, e0214901.	2.5	4
71	Thrombospondin-1 mimetics are promising novel therapeutics for MYC-associated medulloblastoma. Neuro-Oncology Advances, 2021, 3, vdab002.	0.7	2
72	Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice. Genes Chromosomes and Cancer, 2000, 28, 77.	2.8	2

#	Article	IF	CITATIONS
73	EXTH-74. IND-ENABLING CHARACTERIZATION OF DUAL DRD2- AND ClpP-TARGETING AGENT ONC206 AS THE NEXT IMIPRIDONE FOR CLINICAL NEURO-ONCOLOGY. Neuro-Oncology, 2020, 22, ii103-ii103.	1.2	2
74	IMMU-03. TUMOR NECROSIS FACTOR OVERCOMES IMMUNE EVASION IN P53-MUTANT MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii93-ii93.	1.2	1
75	Conventional Therapies Deplete Brain-Infiltrating Adaptive Immune Cells in a Mouse Model of Group 3 Medulloblastoma Implicating Myeloid Cells as Favorable Immunotherapy Targets. Frontiers in Immunology, 2022, 13, 837013.	4.8	1
76	MBRS-14. REGULATION OF MEDULLOBLASTOMA IMMUNOGENICITY BY TP53 AND TNF ALPHA. Neuro-Oncology, 2018, 20, i131-i131.	1.2	0
77	MBRS-65. CHEMI-GENOMIC ANALYSIS OF PATIENT-DERIVED XENOGRAFTS TO IDENTIFY PERSONALIZED THERAPIES FOR MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i142-i142.	1.2	0
78	TMOD-35. CAN RARE SOX9-POSITIVE CELLS INCITE MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE?. Neuro-Oncology, 2018, 20, vi276-vi276.	1.2	0
79	PCLN-05. A BIOBANK OF PATIENT-DERIVED MOLECULARLY CHARACTERIZED ORTHOTOPIC PEDIATRIC BRAIN TUMOR MODELS FOR PRECLINICAL RESEARCH. Neuro-Oncology, 2018, 20, i155-i155.	1.2	0
80	MEDU-44. MUSASHI-1 IS A MASTER REGULATOR OF ABERRANT TRANSLATION IN GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii112-ii113.	1.2	0
81	MEDU-26. LATENT SOX9-POSITIVE CELLS RESPONSIBLE FOR MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2019, 21, ii108-ii109.	1.2	0
82	OMIC-01. THE LANDSCAPE OF EXTRACHROMOSOMAL CIRCULAR DNA IN MEDULLOBLASTOMA SUBGROUPS. Neuro-Oncology, 2021, 23, i37-i37.	1.2	0
83	EMBR-27. NEOPLASTIC AND IMMUNE SINGLE CELL TRANSCRIPTOMICS DEFINE SUBGROUP-SPECIFIC INTRA-TUMORAL HETEROGENEITY OF CHILDHOOD MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i11-i12.	1.2	0
84	OMIC-05. PHOSPHOPROTEOMIC ANALYSIS IDENTIFIES SUBGROUP ENRICHED PATHWAYS AND KINASE SIGNATURES IN MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i37-i38.	1.2	0
85	MBRS-12. A TRANSPOSON MUTAGENESIS SCREEN IDENTIFIES Rreb1 AS A DRIVER FOR GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii400-iii400.	1.2	0
86	EPEN-04. ONCOGENIC 3D TUMOR GENOME ORGANIZATION IDENTIFIES NEW THERAPEUTIC TARGETS IN EPENDYMOMA. Neuro-Oncology, 2020, 22, iii308-iii308.	1.2	0
87	MBRS-01. DISSECTING REGULATORS OF THE ABERRANT POST-TRANSCRIPTIONAL LANDSCAPE IN MYC-AMPLIFIED GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii399-iii399.	1.2	0
88	MBRS-10. QUIESCENT SOX9-POSITIVE CELLS BEHIND MYC DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2020, 22, iii400-iii400.	1.2	0
89	DDEL-10. A NANOPARTICLE PLATFORM FOR INTRATHECAL DELIVERY OF THE HISTONE DEACETYLASE INHIBITOR (HDACi) PANOBINOSTAT IN METASTATIC OR RECURRENT MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii285-iii285.	1.2	0
90	TMOD-25. LATENT SOX9-POSITIVE CELLS BEHIND MYC-DRIVEN MEDULLOBLASTOMA RELAPSE. Neuro-Oncology, 2021, 23, vi220-vi221.	1.2	0

#	Article	IF	CITATIONS
91	BIOM-24. PROTEIN SURFACE SIGNATURE ON SERUM EXTRACELLULAR VESICLES FOR NON-INVASIVE DETECTION OF TUMOR PROGRESSION IN GLIOBLASTOMA PATIENTS. Neuro-Oncology, 2021, 23, vi15-vi16.	1.2	0
92	Predicting Kinase-Substrate Interactions in Medulloblastoma Subtypes. , 2020, , .		0
93	TMOD-30. IDENTIFYING NEW DRIVERS OF GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, ii234-ii234.	1.2	0
94	IMMU-48. CD4+ T CELLS RESTRICT MEDULLOBLASTOMA GROWTH AND DISSEMINATION. Neuro-Oncology, 2020, 22, ii115-ii115.	1.2	0
95	TMOD-07. HUMAN DIFFUSE MIDLINE GLIOMA AVATARS AS A PLATFORM TO SEARCH FOR NOVEL THERAPEUTIC TARGETS. Neuro-Oncology, 2020, 22, ii229-ii229.	1.2	0
96	DIPG-17. CD155 regulates cell growth and immune evasion in diffuse intrinsic pontine glioma. Neuro-Oncology, 2022, 24, i21-i21.	1.2	0
97	EPEN-18. Oncogenic 3D genome conformations identify novel therapeutic targets in ependymoma. Neuro-Oncology, 2022, 24, i42-i42.	1.2	0
98	MEDB-66. Investigating intra-tumoral heterogeneity of extrachromosomal DNA in SHH medulloblastoma. Neuro-Oncology, 2022, 24, i121-i122.	1.2	0
99	MEDB-33. The landscape of ecDNA in medulloblastoma. Neuro-Oncology, 2022, 24, i112-i112.	1.2	0