
Thomas Piper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5966732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of ¹³ C/ ¹² C ratios of endogenous urinary steroids: method validation, reference population and application to doping control purposes. Rapid Communications in Mass Spectrometry, 2008, 22, 2161-2175.	1.5	151
2	ldentification of black market products and potential doping agents in Germany 2010–2013. European Journal of Clinical Pharmacology, 2014, 70, 1303-1311.	1.9	84
3	Recent developments in the use of isotope ratio mass spectrometry in sports drug testing. Analytical and Bioanalytical Chemistry, 2011, 401, 433-447.	3.7	66
4	Determination of the origin of urinary norandrosterone traces by gas chromatography combustion isotope ratio mass spectrometry. Analyst, The, 2006, 131, 1021-1026.	3.5	53
5	Determination of ¹³ C/ ¹² C ratios of endogenous urinary steroids excreted as sulpho conjugates. Rapid Communications in Mass Spectrometry, 2010, 24, 3171-3181.	1.5	46
6	Epiandrosterone sulfate prolongs the detectability of testosterone, 4â€androstenedione, and dihydrotestosterone misuse by means of carbon isotope ratio mass spectrometry. Drug Testing and Analysis, 2017, 9, 1695-1703.	2.6	41
7	Fully automated determination of nicotine and its major metabolites in whole blood by means of a DBS online-SPE LC-HR-MS/MS approach for sports drug testing. Journal of Pharmaceutical and Biomedical Analysis, 2016, 123, 132-140.	2.8	39
8	¹³ C/ ¹² C Ratios of endogenous urinary steroids investigated for doping control purposes. Drug Testing and Analysis, 2009, 1, 65-72.	2.6	36
9	Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing. Analytical and Bioanalytical Chemistry, 2013, 405, 5455-5466.	3.7	36
10	Genotypeâ€dependent metabolism of exogenous testosterone – new biomarkers result in prolonged detectability. Drug Testing and Analysis, 2016, 8, 1163-1173.	2.6	33
11	Determination of ¹³ C/ ¹² C ratios of urinary epitestosterone and its main metabolites 5î±â€•and 5βâ€androstaneâ€3α, 17αâ€diol. Drug Testing and Analysis, 2009, 1, 576-586.	2.6	32
12	Investigations on hydrogen isotope ratios of endogenous urinary steroids: referenceâ€populationâ€based thresholds and proofâ€ofâ€concept. Drug Testing and Analysis, 2012, 4, 717-727.	2.6	32
13	Determination of the deuterium/hydrogen ratio of endogenous urinary steroids for doping control purposes. Rapid Communications in Mass Spectrometry, 2009, 23, 1917-1926.	1.5	31
14	Metabolism of androstaâ€1,4,6â€ŧrieneâ€3,17â€dione and detection by gas chromatography/mass spectrometry in doping control. Rapid Communications in Mass Spectrometry, 2009, 23, 207-218.	1.5	29
15	Determination of ¹³ C/ ¹² C ratios of urinary excreted boldenone and its main metabolite 5βâ€androstâ€1â€enâ€17βâ€olâ€3â€one. Drug Testing and Analysis, 2010, 2, 217-224.	2.6	29
16	Detection of Dehydroepiandrosterone Misuse by Means of Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry. European Journal of Mass Spectrometry, 2007, 13, 419-426.	1.0	27
17	Improved Performance and Maintenance in Gas Chromatography/Isotope Ratio Mass Spectrometry by Precolumn Solvent Removal. Analytical Chemistry, 2007, 79, 4162-4168.	6.5	27
18	Reporting and managing elevated testosterone/epitestosterone ratios-Novel aspects after five years' experience. Drug Testing and Analysis, 2010, 2, 637-642.	2.6	26

THOMAS PIPER

#	Article	IF	CITATIONS
19	Quantifying cobalt in doping control urine samples – a pilot study. Drug Testing and Analysis, 2014, 6, 1186-1190.	2.6	26
20	Hydrogen isotope ratio mass spectrometry and highâ€resolution/highâ€accuracy mass spectrometry in metabolite identification studies: Detecting target compounds for sports drug testing. Rapid Communications in Mass Spectrometry, 2013, 27, 1904-1912.	1.5	25
21	Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 1501-1506.	1.5	25
22	Degradation of urine samples and its influence on the ¹³ C/ ¹² C ratios of excreted steroids. Drug Testing and Analysis, 2010, 2, 620-629.	2.6	23
23	Potential of GHB phase-II-metabolites to complement current approaches in GHB post administration detection. Forensic Science International, 2017, 279, 157-164.	2.2	23
24	Investigations on carbon isotope ratios and concentrations of urinary formestane. Drug Testing and Analysis, 2012, 4, 942-950.	2.6	22
25	Determination of ¹³ C/ ¹² C ratios of endogenous urinary 5â€aminoâ€imidazoleâ€4â€carboxamide 1βâ€Dâ€ribofuranoside (AICAR). Rapid Communications in Mass Spect 2014, 28, 1194-1202.	ronsetry,	22
26	Optimization of an online heartâ€cutting multidimensional gas chromatography cleanâ€up step for isotopic ratio mass spectrometry and simultaneous quadrupole mass spectrometry measurements of endogenous anabolic steroid in urine. Drug Testing and Analysis, 2016, 8, 1204-1211.	2.6	22
27	6αâ€Methylandrostenedione: gas chromatographic mass spectrometric detection in doping control. Rapid Communications in Mass Spectrometry, 2008, 22, 321-329.	1.5	20
28	Expanding sports drug testing assays: Mass spectrometric characterization of the selective androgen receptor modulator drug candidates RAD140 and ACPâ€105. Rapid Communications in Mass Spectrometry, 2013, 27, 1173-1182.	1.5	20
29	Revisiting the metabolism of 19-nortestosterone using isotope ratio and high resolution/high accuracy mass spectrometry. Journal of Steroid Biochemistry and Molecular Biology, 2016, 162, 80-91.	2.5	20
30	Quantification of AICAR-ribotide concentrations in red blood cells by means of LC-MS/MS. Analytical and Bioanalytical Chemistry, 2013, 405, 9703-9709.	3.7	19
31	Mass spectrometric characterization of the selective androgen receptor modulator (SARM) YKâ€11 for doping control purposes. Rapid Communications in Mass Spectrometry, 2017, 31, 1175-1183.	1.5	19
32	GHB-O-β-glucuronide in blood and urine is not a suitable tool for the extension of the detection window after GHB intake. Forensic Toxicology, 2017, 35, 263-274.	2.4	18
33	Applications of Isotope Ratio Mass Spectrometry in Sports Drug Testing Accounting for Isotope Fractionation in Analysis of Biological Samples. Methods in Enzymology, 2017, 596, 403-432.	1.0	18
34	Studies on thein vivometabolism of the SARM YK11: Identification and characterization of metabolites potentially useful for doping controls. Drug Testing and Analysis, 2018, 10, 1646-1656.	2.6	17
35	Development and validation of a multidimensional gas chromatography/combustion/isotope ratio mass spectrometry-based test method for analyzing urinary steroids in doping controls. Analytica Chimica Acta, 2018, 1030, 105-114.	5.4	17
36	Liquid Chromatography-High Resolution/High Accuracy (Tandem) Mass Spectrometry-Based Identification of <i>in vivo</i> Generated Metabolites of the Selective Androgen Receptor Modulator ACP-105 for Doping Control Purposes. European Journal of Mass Spectrometry, 2014, 20, 73-83.	1.0	16

THOMAS PIPER

#	Article	IF	CITATIONS
37	Studies on the in vivo metabolism of methylstenbolone and detection of novel long term metabolites for doping control analysis. Drug Testing and Analysis, 2019, 11, 1644-1655.	2.6	16
38	Urine analysis concerning xenon for doping control purposes. Rapid Communications in Mass Spectrometry, 2015, 29, 61-66.	1.5	15
39	Recent advances in identifying and utilizing metabolites of selected doping agents in human sports drug testing. Journal of Pharmaceutical and Biomedical Analysis, 2021, 205, 114312.	2.8	15
40	Carbon Isotope Ratio Analysis of Steroids by High-Temperature Liquid Chromatography-Isotope Ratio Mass Spectrometry. Analytical Chemistry, 2014, 86, 2297-2302.	6.5	14
41	Current Insights into the Steroidal Module of the Athlete Biological Passport. International Journal of Sports Medicine, 2021, 42, 863-878.	1.7	14
42	Investigations on changes in ¹³ C/ ¹² C ratios of endogenous urinary steroids after pregnenolone administration. Drug Testing and Analysis, 2011, 3, 283-290.	2.6	13
43	Identification of Trenbolone Metabolites Using Hydrogen Isotope Ratio Mass Spectrometry and Liquid Chromatography/High Accuracy/High Resolution Mass Spectrometry for Doping Control Analysis. Frontiers in Chemistry, 2020, 8, 435.	3.6	11
44	Monitoring 2-phenylethanamine and 2-(3-hydroxyphenyl)acetamide sulfate in doping controls. Drug Testing and Analysis, 2015, 7, 1057-1062.	2.6	9
45	Xenon elimination kinetics following brief exposure. Drug Testing and Analysis, 2017, 9, 666-670.	2.6	9
46	Development and validation of a HPLC–QTOF-MS method for the determination of GHB-β-O-glucuronide and GHB-4-sulfate in plasma and urine. Forensic Toxicology, 2017, 35, 77-85.	2.4	9
47	Case Study: Atypical <i>δ</i> ¹³ C values of urinary norandrosterone. Drug Testing and Analysis, 2018, 10, 1728-1733.	2.6	9
48	Effect of acute and chronic xenon inhalation on erythropoietin, hematological parameters, and athletic performance. Journal of Applied Physiology, 2019, 127, 1503-1510.	2.5	9
49	Carbon isotope ratios of endogenous steroids found in human serum—method development, validation, and reference population-derived thresholds. Analytical and Bioanalytical Chemistry, 2021, 413, 5655-5667.	3.7	9
50	Detecting the misuse of 7â€oxoâ€DHEA by means of carbon isotope ratio mass spectrometry in doping control analysis. Rapid Communications in Mass Spectrometry, 2020, 34, e8776.	1.5	8
51	An in vitro assay approach to investigate the potential impact of different doping agents on the steroid profile. Drug Testing and Analysis, 2021, 13, 916-928.	2.6	8
52	Screening for adiponectin receptor agonists and their metabolites in urine and dried blood spots. Clinical Mass Spectrometry, 2017, 6, 13-20.	1.9	7
53	Safety, hemodynamic effects, and detection of acute xenon inhalation: rationale for banning xenon from sport. Journal of Applied Physiology, 2019, 127, 1511-1518.	2.5	7
54	Influences of β-HCG administration on carbon isotope ratios of endogenous urinary steroids. Steroids, 2012, 77, 644-654.	1.8	6

THOMAS PIPER

#	Article	IF	CITATIONS
55	Implementation and Performance of the Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometry-Based Method for the Confirmatory Analysis of Endogenous Anabolic Steroids during the Rio de Janeiro Olympic and Paralympic Games 2016. Analytical Chemistry, 2019, 91, 11747-11756.	6.5	6
56	Investigations in carbon isotope ratios of seized testosterone and boldenone preparations. Drug Testing and Analysis, 2022, 14, 514-518.	2.6	6
57	Androgens, sports, and detection strategies for anabolic drug use. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, , 101609.	4.7	6
58	Analysis of endogenous steroids in urine by means of multi-immunoaffinity chromatography and isotope ratio mass spectrometry for sports drug testing. Analytical and Bioanalytical Chemistry, 2019, 411, 7563-7571.	3.7	4
59	Sensitive detection of testosterone and testosterone prohormone administrations based on urinary concentrations and carbon isotope ratios of androsterone and etiocholanolone. Drug Testing and Analysis, 2021, 13, 1835-1851.	2.6	4
60	Urinary phenylethylamine metabolites as potential markers for sports drug testing purposes. Biomedical Chromatography, 2022, 36, e5274.	1.7	4
61	Effect of changes in the deuterium content of drinking water on the hydrogen isotope ratio of urinary steroids in the context of sports drug testing. Analytical and Bioanalytical Chemistry, 2013, 405, 2911-2921.	3.7	2
62	Analytics of nonpeptidic erythropoietin mimetic agents in sports drug testing employing high-resolution/high-accuracy liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 6431-6442.	3.7	2
63	Carbon isotope ratios of endogenous steroids in Belgian Blue and Holstein cattle: Method development, reference population studies and application to steroid misuse control. Rapid Communications in Mass Spectrometry, 2017, 31, 1793-1802.	1.5	2
64	Investigations on the <i>in vivo</i> metabolism of 5αâ€androstâ€2â€enâ€17â€one. Rapid Communications in M Spectrometry, 2022, 36, .	ass 1.5	2