Brian H Morrow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5966642/publications.pdf

Version: 2024-02-01

471509 526287 29 990 17 27 citations h-index g-index papers 29 29 29 1511 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent development and application of constant pH molecular dynamics. Molecular Simulation, 2014, 40, 830-838.	2.0	102
2	Review of force fields and intermolecular potentials used in atomistic computational materials research. Applied Physics Reviews, 2018, 5, 031104.	11.3	101
3	Stabilization of Aqueous Carbon Nanotube Dispersions Using Surfactants: Insights from Molecular Dynamics Simulations. ACS Nano, 2010, 4, 7193-7204.	14.6	93
4	pH-Responsive Self-Assembly of Polysaccharide through a Rugged Energy Landscape. Journal of the American Chemical Society, 2015, 137, 13024-13030.	13.7	89
5	Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface. Polymers, 2015, 7, 1-46.	4.5	87
6	CO Adsorption on Noble Metal Clusters: Local Environment Effects. Journal of Physical Chemistry C, 2011, 115, 5637-5647.	3.1	45
7	Atomistic simulations of pH-dependent self-assembly of micelle and bilayer from fatty acids. Journal of Chemical Physics, 2012, 137, 194902.	3.0	45
8	Morphology and Diffusion Mechanism of Platinum Nanoparticles on Carbon Nanotube Bundles. Journal of Physical Chemistry C, 2007, 111, 17905-17913.	3.1	43
9	Self-Assembly and Bilayer–Micelle Transition of Fatty Acids Studied by Replica-Exchange Constant pH Molecular Dynamics. Langmuir, 2013, 29, 14823-14830.	3 . 5	42
10	Platinum nanoparticles on carbonaceous materials: the effect of support geometry on nanoparticle mobility, morphology, and melting. Nanotechnology, 2008, 19, 195711.	2.6	40
11	Toward Understanding the Environmental Control of Hydrogel Film Properties: How Salt Modulates the Flexibility of Chitosan Chains. Macromolecules, 2017, 50, 5946-5952.	4.8	35
12	Supported bimetallic Pt-Au nanoparticles: Structural features predicted by molecular dynamics simulations. Physical Review B, 2010, 81, .	3.2	34
13	Diarylcyclopentendione Metabolite Obtained from a <i>Preussia typharum</i> Isolate Procured Using an Unconventional Cultivation Approach. Journal of Natural Products, 2012, 75, 1819-1823.	3.0	33
14	Vapor–Liquid Equilibrium Simulations of Hydrocarbons Using Molecular Dynamics with Long-Range Lennard-Jones Interactions. Energy & Dels, 2019, 33, 848-858.	5.1	27
15	Simulating pH Titration of a Single Surfactant in Ionic and Nonionic Surfactant Micelles. Journal of Physical Chemistry B, 2011, 115, 14980-14990.	2.6	25
16	Thermophysical Properties of Binary Mixtures of <i>n</i> -Dodecane with <i>n</i> -Alkylcyclohexanes: Experimental Measurements and Molecular Dynamics Simulations. Journal of Chemical & Samp; Engineering Data, 2019, 64, 1550-1568.	1.9	21
17	Assessing how metal–carbon interactions affect the structure of supported platinum nanoparticles. Molecular Simulation, 2009, 35, 795-803.	2.0	18
18	Impact of Molecular Structure on Properties of <i>n</i> -Hexadecane and Alkylbenzene Binary Mixtures. Journal of Physical Chemistry B, 2018, 122, 6595-6603.	2.6	18

#	Article	IF	CITATIONS
19	Systematic examination of the links between composition and physical properties in surrogate fuel mixtures using molecular dynamics. Fuel, 2020, 261, 116247.	6.4	18
20	Elucidating the Properties of Surrogate Fuel Mixtures Using Molecular Dynamics. Energy & Ener	5.1	16
21	Nitric oxide coupling mediated by iron porphyrins: the N–N bond formation step is facilitated by electrons and a proton. Chemical Communications, 2012, 48, 9041.	4.1	14
22	Densities, Speeds of Sound, and Viscosities of Binary Mixtures of an <i>n-</i> Alkylcyclohexane (<i>n-</i> Propyl-, <i>n-</i> Pentyl-, <i>n-</i> Hexyl-, <i>h-</i> Heptyl, <i>n-</i> Octyl-, <i>n-</i> Nonyl-, <i>n-</i> Decyl-,) Tj1ETQq0	O Ø3rgBT/Ov€
23	Binary Mixtures of Aromatic Compounds (<i>n</i> -Propylbenzene, 1,3,5-Trimethylbenzene, and) Tj ETQq1 1 0.78 Moduli, Surface Tensions, and Flash Points at 0.1 MPa. Journal of Chemical & Engineering Data, 2020. 65. 2625-2641.	34314 rgB 1.9	T /Overlock 1(13
24	Predicting proton titration in cationic micelle and bilayer environments. Journal of Chemical Physics, 2014, 141, 084714.	3.0	7
25	Evaluating the Ability of Selected Force Fields to Simulate Hydrocarbons as a Function of Temperature and Pressure Using Molecular Dynamics. Energy & Energy & Society 2021, 35, 3742-3752.	5.1	5
26	Thermophysical Properties of Two-Component Mixtures of <i>n</i> -Nonylbenzene or 1,3,5-Triisopropylbenzene with <i>n</i> -Hexadecane or <i>n</i> -Dodecane at 0.1 MPa: Experimentally Measured Densities, Viscosities, and Speeds of Sound and Molecular Packing Modeled Using Molecular Dynamics Simulations, Journal of Chemical & Dynamics	1.9	3
27	Titration Properties and pH-Dependent Aggregation of Chitosan. Biophysical Journal, 2015, 108, 488a.	0.5	2
28	Interfacial Properties of Linear Alkane/Nitrogen Binary Mixtures: Molecular Dynamics Vapor–Liquid Equilibrium Simulations. Journal of Physical Chemistry B, 2022, 126, 4379-4388.	2.6	1
29	All Atom Molecular Dynamics Simulations of pH Dependent Surfactants. Biophysical Journal, 2013, 104, 664a.	0.5	O