Andrew D Ellington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/596512/publications.pdf

Version: 2024-02-01

303 papers 32,666 citations

79 h-index

6613

172 g-index

326 all docs

326 docs citations

times ranked

326

23238 citing authors

#	Article	IF	CITATIONS
1	In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346, 818-822.	27.8	8,658
2	Aptamers as therapeutics. Nature Reviews Drug Discovery, 2010, 9, 537-550.	46.4	1,780
3	Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature, 1992, 355, 850-852.	27.8	763
4	Applications of Aptamers as Sensors. Annual Review of Analytical Chemistry, 2009, 2, 241-264.	5.4	714
5	Aptamer Beacons for the Direct Detection of Proteins. Analytical Biochemistry, 2001, 294, 126-131.	2.4	569
6	Engineering Escherichia coli to see light. Nature, 2005, 438, 441-442.	27.8	565
7	Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chemical Reviews, 1997, 97, 349-370.	47.7	503
8	A Synthetic Genetic Edge Detection Program. Cell, 2009, 137, 1272-1281.	28.9	442
9	Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Research, 2011, 39, e110-e110.	14.5	438
10	Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 2022, 604, 662-667.	27.8	396
11	Automated selection of anti-Protein aptamers. Bioorganic and Medicinal Chemistry, 2001, 9, 2525-2531.	3.0	358
12	Aptamer therapeutics advance. Current Opinion in Chemical Biology, 2006, 10, 282-289.	6.1	358
13	Adapting Selected Nucleic Acid Ligands (Aptamers) to Biosensors. Analytical Chemistry, 1998, 70, 3419-3425.	6.5	349
14	In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nature Medicine, 2015, 21, 86-91.	30.7	345
15	Hachimoji DNA and RNA: A genetic system with eight building blocks. Science, 2019, 363, 884-887.	12.6	337
16	Micromechanical Detection of Proteins Using Aptamer-Based Receptor Molecules. Analytical Chemistry, 2004, 76, 3194-3198.	6.5	326
17	Aptamer-Based Sensor Arrays for the Detection and Quantitation of Proteins. Analytical Chemistry, 2004, 76, 4066-4075.	6.5	302
18	Designed Signaling Aptamers that Transduce Molecular Recognition to Changes in Fluorescence Intensity. Journal of the American Chemical Society, 2000, 122, 2469-2473.	13.7	272

#	Article	IF	CITATIONS
19	Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature Medicine, 2016, 22, 1456-1464.	30.7	271
20	Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023812.	5 . 5	271
21	Aptamer:Toxin Conjugates that Specifically Target Prostate Tumor Cells. Cancer Research, 2006, 66, 5989-5992.	0.9	269
22	Diagnostic Applications of Nucleic Acid Circuits. Accounts of Chemical Research, 2014, 47, 1825-1835.	15.6	269
23	Quantum-Dot Aptamer Beacons for the Detection of Proteins. ChemBioChem, 2005, 6, 2163-2166.	2.6	258
24	In vitro selection of signaling aptamers. Nature Biotechnology, 2000, 18, 1293-1297.	17.5	257
25	Real-Time Detection of Isothermal Amplification Reactions with Thermostable Catalytic Hairpin Assembly. Journal of the American Chemical Society, 2013, 135, 7430-7433.	13.7	243
26	In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nature Biotechnology, 1999, 17, 62-66.	17.5	242
27	Disulfide-Intact and -Reduced Lysozyme in the Gas Phase:Â Conformations and Pathways of Folding and Unfolding. Journal of Physical Chemistry B, 1997, 101, 3891-3900.	2.6	224
28	Stacking nonenzymatic circuits for high signal gain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5386-5391.	7.1	223
29	Probing Spatial Organization of DNA Strands Using Enzyme-Free Hairpin Assembly Circuits. Journal of the American Chemical Society, 2012, 134, 13918-13921.	13.7	217
30	Using a Deoxyribozyme Ligase and Rolling Circle Amplification To Detect a Non-nucleic Acid Analyte, ATP. Journal of the American Chemical Society, 2005, 127, 2022-2023.	13.7	187
31	Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2636-45.	7.1	179
32	Real-Time Rolling Circle Amplification for Protein Detection. Analytical Chemistry, 2007, 79, 3320-3329.	6.5	176
33	In vitro Evolution of Beta-glucuronidase into a Beta-galactosidase Proceeds Through Non-specific Intermediates. Journal of Molecular Biology, 2001, 305, 331-339.	4.2	171
34	Deep penetration of an α-helix into a widened RNA major groove in the HIV-1 rev peptide–RNA aptamer complex. Nature Structural Biology, 1996, 3, 1026-1033.	9.7	170
35	Optimization of aptamer microarray technology for multiple protein targets. Analytica Chimica Acta, 2006, 564, 82-90.	5.4	167
36	Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging. Bioconjugate Chemistry, 2008, 19, 1309-1312.	3.6	166

#	Article	IF	CITATIONS
37	Ribozyme Catalysis of Metabolism in the RNA World. Chemistry and Biodiversity, 2007, 4, 633-655.	2.1	165
38	Mismatches Improve the Performance of Strandâ€Displacement Nucleic Acid Circuits. Angewandte Chemie - International Edition, 2014, 53, 1845-1848.	13.8	164
39	Evolution of a T7 RNA polymerase variant that transcribes 2′-O-methyl RNA. Nature Biotechnology, 2004, 22, 1155-1160.	17.5	161
40	Engineered symbionts activate honey bee immunity and limit pathogens. Science, 2020, 367, 573-576.	12.6	161
41	Monitoring the Growth of a Bacteria Culture by MALDI-MS of Whole Cells. Analytical Chemistry, 1999, 71, 1990-1996.	6.5	159
42	Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Research, 2002, 30, 108e-108.	14.5	155
43	Protein-dependent ribozymes report molecular interactions in real time. Nature Biotechnology, 2002, 20, 717-722.	17.5	154
44	Inhibition of Cell Proliferation by an Anti-EGFR Aptamer. PLoS ONE, 2011, 6, e20299.	2.5	149
45	Labeling tumor cells with fluorescent nanocrystal–aptamer bioconjugates. Biosensors and Bioelectronics, 2006, 21, 1859-1866.	10.1	146
46	Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature, 1990, 347, 578-580.	27.8	143
47	Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes. Nature Protocols, 2016, 11, 429-442.	12.0	140
48	Selective optimization of the Rev-binding element of HIV-1. Nucleic Acids Research, 1993, 21, 5509-5516.	14.5	139
49	Selection of fluorescent aptamer beacons that light up in the presence of zinc. Analytical and Bioanalytical Chemistry, 2008, 390, 1067-1075.	3.7	139
50	Automated RNA Selection. Biotechnology Progress, 1998, 14, 845-850.	2.6	138
51	In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature, 1990, 347, 406-408.	27.8	136
52	Production and processing of aptamer microarrays. Methods, 2005, 37, 4-15.	3.8	135
53	Coupling Sensitive Nucleic Acid Amplification with Commercial Pregnancy Test Strips. Angewandte Chemie - International Edition, 2017, 56, 992-996.	13.8	135
54	Crystal structure of an RNA aptamer–protein complex at 2.8 Å resolution. Nature Structural Biology, 1998, 5, 133-139.	9.7	134

#	Article	IF	Citations
55	Directed evolution of genetic parts and circuits by compartmentalized partnered replication. Nature Biotechnology, 2014, 32, 97-101.	17.5	133
56	Robust Strand Exchange Reactions for the Sequence-Specific, Real-Time Detection of Nucleic Acid Amplicons. Analytical Chemistry, 2015, 87, 3314-3320.	6.5	128
57	Structure-Based Design of Supercharged, Highly Thermoresistant Antibodies. Chemistry and Biology, 2012, 19, 449-455.	6.0	127
58	Pattern transformation with DNA circuits. Nature Chemistry, 2013, 5, 1000-1005.	13.6	122
59	Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV). PLoS ONE, 2015, 10, e0123126.	2.5	122
60	AANT: the Amino Acid-Nucleotide Interaction Database. Nucleic Acids Research, 2004, 32, 174D-181.	14.5	120
61	Synthetic evolutionary origin of a proofreading reverse transcriptase. Science, 2016, 352, 1590-1593.	12.6	119
62	Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Research, 2000, 28, 1751-1759.	14.5	109
63	DNA Detection Using Origami Paper Analytical Devices. Analytical Chemistry, 2013, 85, 9713-9720.	6. 5	109
64	Functional interrogation and mining of natively paired human VH:VL antibody repertoires. Nature Biotechnology, 2018, 36, 152-155.	17.5	109
65	In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution. Chemistry and Biology, 1995, 2, 291-303.	6.0	108
66	A Simple, Cleated DNA Walker That Hangs on to Surfaces. ACS Nano, 2017, 11, 8047-8054.	14.6	107
67	Arginine-rich motifs present multiple interfaces for specific binding by RNA. Rna, 2005, 11, 1848-1857.	3.5	104
68	RNA Selection: Aptamers achieve the desired recognition. Current Biology, 1994, 4, 427-429.	3.9	99
69	Massively Parallel Biophysical Analysis of CRISPR-Cas Complexes on Next Generation Sequencing Chips. Cell, 2017, 170, 35-47.e13.	28.9	96
70	Effective design principles for leakless strand displacement systems. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12182-E12191.	7.1	94
71	In vitro selection of molecular beacons. Nucleic Acids Research, 2003, 31, 5700-5713.	14.5	92
72	In vitro selection of nucleic acids for diagnostic applications. Reviews in Molecular Biotechnology, 2000, 74, 15-25.	2.8	90

#	Article	IF	CITATIONS
73	Technical and Biological Issues Relevant to Cell Typing with Aptamers. Journal of Proteome Research, 2009, 8, 2438-2448.	3.7	90
74	Adapting Enzyme-Free DNA Circuits to the Detection of Loop-Mediated Isothermal Amplification Reactions. Analytical Chemistry, 2012, 84, 8371-8377.	6.5	90
75	Functional RNA microarrays for high-throughput screening of antiprotein aptamers. Analytical Biochemistry, 2005, 338, 113-123.	2.4	88
76	In vitro selection of nucleoprotein enzymes. Nature Biotechnology, 2001, 19, 650-655.	17.5	87
77	Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for Modular Assembly of Broad-Host-Range Plasmids. ACS Synthetic Biology, 2018, 7, 1279-1290.	3.8	87
78	Gas-Phase DNA: Oligothymidine Ion Conformers. Journal of the American Chemical Society, 1997, 119, 9051-9052.	13.7	86
79	Strand Displacement Probes Combined with Isothermal Nucleic Acid Amplification for Instrument-Free Detection from Complex Samples. Analytical Chemistry, 2018, 90, 6580-6586.	6.5	86
80	Bioinformatic Analysis of the Contribution of Primer Sequences to Aptamer Structures. Journal of Molecular Evolution, 2008, 67, 95-102.	1.8	85
81	Expanding the limits of the second genetic code with ribozymes. Nature Communications, 2019, 10, 5097.	12.8	83
82	Group I aptazymes as genetic regulatory switches. BMC Biotechnology, 2002, 2, 21.	3.3	82
83	DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab on A Chip, 2012, 12, 2951.	6.0	80
84	Discovery of Novel Gain-of-Function Mutations Guided by Structure-Based Deep Learning. ACS Synthetic Biology, 2020, 9, 2927-2935.	3.8	80
85	Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment. ELife, 2015, 4, .	6.0	79
86	Dynamic Programming of a DNA Walker Controlled by Protons. ACS Nano, 2020, 14, 4007-4013.	14.6	78
87	Directed evolution of the surface chemistry of the reporter enzyme \hat{l}^2 -glucuronidase. Nature Biotechnology, 1999, 17, 696-701.	17.5	76
88	Selection and Characterization of Escherichia coli Variants Capable of Growth on an Otherwise Toxic Tryptophan Analogue. Journal of Bacteriology, 2001, 183, 5414-5425.	2.2	75
89	Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2217-2222.	7.1	75
90	Exponential growth by cross-catalytic cleavage of deoxyribozymogens. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6416-6421.	7.1	74

#	Article	IF	Citations
91	Simultaneous detection of diverse analytes with an aptazyme ligase array. Analytical Biochemistry, 2003, 312, 106-112.	2.4	73
92	Phosphorothioated Primers Lead to Loop-Mediated Isothermal Amplification at Low Temperatures. Analytical Chemistry, 2018, 90, 8290-8294.	6.5	73
93	Alternative Computational Protocols for Supercharging Protein Surfaces for Reversible Unfolding and Retention of Stability. PLoS ONE, 2013, 8, e64363.	2.5	73
94	Design and application of cotranscriptional non-enzymatic RNA circuits and signal transducers. Nucleic Acids Research, 2014, 42, e58-e58.	14.5	71
95	Generalized bacterial genome editing using mobile group II introns and Cre‷lox. Molecular Systems Biology, 2013, 9, 685.	7.2	70
96	Supercharging enables organized assembly of synthetic biomolecules. Nature Chemistry, 2019, 11, 204-212.	13.6	70
97	Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry. Journal of the American Chemical Society, 2015, 137, 9128-9135.	13.7	69
98	A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers. Scientific Reports, 2015, 5, 11039.	3.3	66
99	NMR Mapping of the Recombinant Mouse Major Urinary Protein I Binding Site Occupied by the Pheromone 2- <i>sec-</i> Butyl-4,5-dihydrothiazole. Biochemistry, 1999, 38, 9850-9861.	2.5	65
100	Evolutionary origins and directed evolution of RNA. International Journal of Biochemistry and Cell Biology, 2009, 41, 254-265.	2.8	65
101	Selection and design of high-affinity rna ligands for hiv-1 rev. Gene, 1993, 137, 19-24.	2.2	63
102	Synthetic evolution. Nature Biotechnology, 2019, 37, 730-743.	17.5	63
103	Increasing the thermal stability of an oligomeric protein, beta-glucuronidase. Journal of Molecular Biology, 2002, 315, 325-337.	4.2	62
104	Effect of Complementary Nucleobase Interactions on the Copolymer Composition of RAFT Copolymerizations. ACS Macro Letters, 2013, 2, 581-586.	4.8	62
105	Automated Acquisition of Aptamer Sequences. Combinatorial Chemistry and High Throughput Screening, 2002, 5, 289-299.	1.1	61
106	Retrons and their applications in genome engineering. Nucleic Acids Research, 2019, 47, 11007-11019.	14.5	60
107	Transcription yield of fully 2′-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants. Nucleic Acids Research, 2015, 43, 7480-7488.	14.5	57
108	A three–dimensional model of the Rev–binding element of HIV–1 derived from analyses of aptamers. Nature Structural and Molecular Biology, 1994, 1, 293-300.	8.2	56

#	Article	IF	Citations
109	The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants. Molecular Diversity, 1998, 4, 75-89.	3.9	56
110	Direct selection of trans-acting ligase ribozymes by in vitro compartmentalization. Rna, 2005, 11, 1555-1562.	3.5	56
111	Selecting Nucleic Acids for Biosensor Applications. Combinatorial Chemistry and High Throughput Screening, 2002, 5, 263-270.	1.1	55
112	Addicting diverse bacteria to a noncanonical amino acid. Nature Chemical Biology, 2016, 12, 138-140.	8.0	55
113	Shaping up nucleic acid computation. Current Opinion in Biotechnology, 2010, 21, 392-400.	6.6	54
114	A Spinach molecular beacon triggered by strand displacement. Rna, 2014, 20, 1183-1194.	3.5	54
115	A proteomic survey of widespread protein aggregation in yeast. Molecular BioSystems, 2014, 10, 851.	2.9	53
116	Directed evolution of a synthetic phylogeny of programmable Trp repressors. Nature Chemical Biology, 2018, 14, 361-367.	8.0	53
117	Re-creating the RNA world. Current Biology, 1995, 5, 1017-1022.	3.9	52
118	RNA Molecules That Bind to and Inhibit the Active Site of a Tyrosine Phosphatase. Journal of Biological Chemistry, 1998, 273, 14309-14314.	3.4	52
119	High-Surety Isothermal Amplification and Detection of SARS-CoV-2. MSphere, 2021, 6, .	2.9	52
120	Directed Evolution of a Panel of Orthogonal T7 RNA Polymerase Variants for <i>in Vivo</i> or <i>in Vitro</i> Synthetic Circuitry. ACS Synthetic Biology, 2015, 4, 1070-1076.	3.8	51
121	Cofactor-Assisted Self-Cleavage in DNA Libraries with a 3′–5′-Phosphoramidate Bond. Angewandte Chemie International Edition in English, 1997, 36, 1321-1324.	4.4	50
122	In vitro selection of ribozymes dependent on peptides for activity. Rna, 2004, 10, 114-127.	3.5	47
123	Synthetic RNA circuits. Nature Chemical Biology, 2007, 3, 23-28.	8.0	47
124	Recombineering and MAGE. Nature Reviews Methods Primers, 2021, 1, .	21,2	47
125	Anchoring an extended HTLV-1 Rex peptide within an RNA major groove containing junctional base triples. Structure, 1999, 7, 1461-S12.	3.3	45
126	Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness. Nature Chemical Biology, 2014, 10, 178-180.	8.0	44

#	Article	IF	CITATIONS
127	Retroelement-Based Genome Editing and Evolution. ACS Synthetic Biology, 2018, 7, 2600-2611.	3.8	44
128	High resolution matrix-assisted laser desorption/ionization time-of-flight analysis of single-stranded DNA of 27 to 68 nucleotides in length. Rapid Communications in Mass Spectrometry, 1995, 9, 1061-1066.	1.5	43
129	Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes. PLoS Computational Biology, 2009, 5, e1000620.	3.2	43
130	Surprising fidelity of template-directed chemical ligation of oligonucleotides. Chemistry and Biology, 1997, 4, 595-605.	6.0	42
131	The scene of a frozen accident. Rna, 2000, 6, 485-498.	3.5	42
132	Real-time PCR detection of protein analytes with conformation-switching aptamers. Analytical Biochemistry, 2008, 380, 164-173.	2.4	42
133	The fidelity of template-directed oligonucleotide ligation and the inevitability of polymerase function. , 1999, 29, 375-390.		41
134	Evolving new genetic codes. Trends in Ecology and Evolution, 2004, 19, 69-75.	8.7	41
135	Ribozyme-Mediated Signal Augmentation on a Mass-Sensitive Biosensor. Journal of the American Chemical Society, 2006, 128, 15936-15937.	13.7	41
136	The search for missing links between self-replicating nucleic ACIDs and the RNA world. Origins of Life and Evolution of Biospheres, 1995, 25, 515-530.	1.9	40
137	Computational selection of nucleic acid biosensors via a slip structure model. Biosensors and Bioelectronics, 2007, 22, 1939-1947.	10.1	40
138	High-affinity RNA Aptamers Against the HIV-1 Protease Inhibit Both In Vitro Protease Activity and Late Events of Viral Replication. Molecular Therapy - Nucleic Acids, 2015, 4, e228.	5.1	40
139	Fingerprinting Non-Terran Biosignatures. Astrobiology, 2018, 18, 915-922.	3.0	40
140	Pattern Generation with Nucleic Acid Chemical Reaction Networks. Chemical Reviews, 2019, 119, 6370-6383.	47.7	40
141	Custom selenoprotein production enabled by laboratory evolution of recoded bacterial strains. Nature Biotechnology, 2018, 36, 624-631.	17.5	39
142	Artificial evolution and natural ribozymes. FASEB Journal, 1995, 9, 1183-1195.	0.5	38
143	Portable platform for rapid in-field identification of human fecal pollution in water. Water Research, 2018, 131, 186-195.	11.3	37
144	Evolution of phage with chemically ambiguous proteomes. BMC Evolutionary Biology, 2003, 3, 24.	3.2	36

#	Article	IF	CITATIONS
145	A General RNA Motif for Cellular Transfection. Molecular Therapy, 2012, 20, 616-624.	8.2	36
146	Continuous directed evolution for strain and protein engineering. Current Opinion in Biotechnology, 2018, 53, 158-163.	6.6	36
147	Optimization and optimality of a short ribozyme ligase that joins non-Watson–Crick base pairings. Rna, 2001, 7, 513-523.	3.5	35
148	Using fungible biosensors to evolve improved alkaloid biosyntheses. Nature Chemical Biology, 2022, 18, 981-989.	8.0	35
149	Beyond allostery: Catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier. Journal of Systems Chemistry, 2010, 1, .	1.7	34
150	Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chemical Science, 2017, 8, 4062-4072.	7.4	34
151	An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins. Journal of Biotechnology, 2014, 178, 12-22.	3.8	33
152	Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids. ACS Synthetic Biology, 2017, 6, 108-119.	3.8	33
153	Photoactivated DNA cleavage via charge transfer promoted N2 release from tris[3-hydroxy-1,2,3-benzotriazine-4(3H)-one]iron(III). Chemical Communications, 2000, , 69-70.	4.1	32
154	Proliferation and migration of tumor cells in tapered channels. Biomedical Microdevices, 2013, 15, 635-643.	2.8	32
155	Evolution of a Thermophilic Strand-Displacing Polymerase Using High-Temperature Isothermal Compartmentalized Self-Replication. Biochemistry, 2018, 57, 4607-4619.	2.5	32
156	Evolving a Generalist Biosensor for Bicyclic Monoterpenes. ACS Synthetic Biology, 2022, 11, 265-272.	3.8	31
157	In Vitro Selection Using Modified or Unnatural Nucleotides. Current Protocols in Nucleic Acid Chemistry, 2014, 56, 9.6.1-33.	0.5	30
158	Peptide-Templated Nucleic Acid Ligation. Journal of Molecular Evolution, 2003, 56, 607-615.	1.8	29
159	Binding of herpes simplex virus-1 US11 to specific RNA sequences. Nucleic Acids Research, 2005, 33, 6090-6100.	14.5	28
160	Exploration of plasticizer and plastic explosive detection and differentiation with serum albumin cross-reactive arrays. Chemical Science, 2012, 3, 1773.	7.4	28
161	Ribosomal incorporation of cyclic \hat{l}^2 -amino acids into peptides using <i>in vitro</i> translation. Chemical Communications, 2020, 56, 5597-5600.	4.1	28
162	Anti-Rex Aptamers as Mimics of the Rex-Binding Element. Journal of Virology, 1999, 73, 4962-4971.	3.4	28

#	Article	IF	Citations
163	A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase. Protein Engineering, Design and Selection, 2005, 18 , $369-377$.	2.1	27
164	In vitro evolution of thermostable p53 variants. Protein Science, 1999, 8, 731-740.	7.6	27
165	Charge Shielding Prevents Aggregation of Supercharged GFP Variants at High Protein Concentration. Molecular Pharmaceutics, 2017, 14, 3269-3280.	4.6	27
166	Directed Evolution of Streptavidin Variants Using In Vitro Compartmentalization. Chemistry and Biology, 2008, 15, 979-989.	6.0	26
167	A biopolymer by any other name would bind as well: a comparison of the ligand-binding pockets of nucleic acids and proteins. Structure, 1997, 5, 729-734.	3.3	25
168	The descent of polymerization. , 2001, 8, 580-582.		25
169	In vitro selection of proteins via emulsion compartments. Methods, 2013, 60, 75-80.	3.8	24
170	Direct nucleic acid analysis of mosquitoes for high fidelity species identification and detection of Wolbachia using a cellphone. PLoS Neglected Tropical Diseases, 2018, 12, e0006671.	3.0	24
171	3D Printing with Nucleic Acid Adhesives. ACS Biomaterials Science and Engineering, 2015, 1, 19-26.	5.2	23
172	<i>In Vitro</i> Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity. ACS Synthetic Biology, 2015, 4, 1144-1150.	3.8	23
173	Single-Molecule Mechanistic Study of Enzyme Hysteresis. ACS Central Science, 2019, 5, 1691-1698.	11.3	23
174	Kinetic optimization of a proteinâ€responsive aptamer beacon. Biotechnology and Bioengineering, 2009, 103, 1049-1059.	3.3	22
175	Chemical Tools To Decipher Regulation of Phosphatases by Proline Isomerization on Eukaryotic RNA Polymerase II. ACS Chemical Biology, 2015, 10, 2405-2414.	3.4	22
176	Thinking combinatorially. Current Opinion in Chemical Biology, 1999, 3, 256-259.	6.1	21
177	Using RNA Aptamers and the Proximity Ligation Assay for the Detection of Cell Surface Antigens. Methods in Molecular Biology, 2008, 504, 385-398.	0.9	21
178	Direct selection for ribozyme cleavage activity in cells. Rna, 2009, 15, 2035-2045.	3.5	21
179	Coupling Sensitive Nucleic Acid Amplification with Commercial Pregnancy Test Strips. Angewandte Chemie, 2017, 129, 1012-1016.	2.0	21
180	Genetic alphabet expansion transcription generating functional RNA molecules containing a five-letter alphabet including modified unnatural and natural base nucleotides by thermostable T7 RNA polymerase variants. Chemical Communications, 2017, 53, 12309-12312.	4.1	21

#	Article	IF	CITATIONS
181	Training ribozymes to switch., 1999, 6, 992-994.		20
182	Structure-based non-canonical amino acid design to covalently crosslink an antibody–antigen complex. Journal of Structural Biology, 2014, 185, 215-222.	2.8	20
183	A primerless molecular diagnostic: phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP). Analytical and Bioanalytical Chemistry, 2016, 408, 8583-8591.	3.7	20
184	Purification of single-stranded DNA by co-polymerization with acrylamide and electrophoresis. BioTechniques, 2017, 62, 275-282.	1.8	20
185	One-Enzyme Reverse Transcription qPCR Using Taq DNA Polymerase. Biochemistry, 2020, 59, 4638-4645.	2.5	20
186	Improved Bst DNA Polymerase Variants Derived <i>via</i> a Machine Learning Approach. Biochemistry, 2023, 62, 410-418.	2.5	20
187	Compartmentalized partnered replication for the directed evolution of genetic parts and circuits. Nature Protocols, 2017, 12, 2493-2512.	12.0	19
188	Differential array sensing for cancer cell classification and novelty detection. Organic and Biomolecular Chemistry, 2017, 15, 9866-9874.	2.8	19
189	Polyvalent Rev Decoys Act as Artificial Rev-Responsive Elements. Journal of Virology, 1999, 73, 4341-4349.	3.4	19
190	Deoxyribozymes that recode sequence information. Nucleic Acids Research, 2006, 34, 2166-2172.	14.5	18
191	Modelling amorphous computations with transcription networks. Journal of the Royal Society Interface, 2009, 6, S523-33.	3.4	18
192	Directed evolution of the substrate specificity of biotin ligase. Biotechnology and Bioengineering, 2014, 111, 1071-1081.	3.3	18
193	Construction of synthetic T7 RNA polymerase expression systems. Methods, 2018, 143, 110-120.	3.8	18
194	A facile technology for the high-throughput sequencing of the paired VH:VL and TCRÎ ² :TCRα repertoires. Science Advances, 2020, 6, eaay9093.	10.3	18
195	Screening chemical libraries for nucleic-acid-binding drugs by in vitro selection: A test case with lividomycin. Molecular Diversity, 1996, 2, 103-110.	3.9	17
196	The importance of prebiotic chemistry in the RNA World. Current Opinion in Chemical Biology, 2004, 8, 629-633.	6.1	17
197	Recent advances in synthetic biosafety. F1000Research, 2016, 5, 2118.	1.6	17
198	Cellular reagents for diagnostics and synthetic biology. PLoS ONE, 2018, 13, e0201681.	2.5	17

#	Article	IF	CITATIONS
199	Identifying Protein Variants with Crossâ€Reactive Aptamer Arrays. ChemBioChem, 2011, 12, 2021-2024.	2.6	16
200	An <i>in vitro</i> Autogene. ACS Synthetic Biology, 2012, 1, 190-196.	3.8	16
201	A fully-electronic charge-based DNA sequencing CMOS biochip. , 2012, , .		16
202	Library Generation by Gene Shuffling. Current Protocols in Molecular Biology, 2014, 105, Unit 15.12	2.9	16
203	Strand-Exchange Nucleic Acid Circuitry with Enhanced Thermo-and Structure- Buffering Abilities Turns Gene Diagnostics Ultra-Reliable and Environmental Compatible. Scientific Reports, 2016, 6, 36605.	3.3	16
204	Engineering Signaling Aptamers That Rely on Kinetic Rather Than Equilibrium Competition. Analytical Chemistry, 2016, 88, 2250-2257.	6.5	16
205	Amplicon Competition Enables Endâ€Point Quantitation of Nucleic Acids Following Isothermal Amplification. ChemBioChem, 2017, 18, 1692-1695.	2.6	16
206	Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics. Acta Biomaterialia, 2020, 102, 315-325.	8.3	16
207	Spatial Control of DNA Reaction Networks by DNA Sequence. Molecules, 2012, 17, 13390-13402.	3.8	15
208	The RNA world. Empirical explorations of sequence space: Hostâ€guest chemistry in the RNA world. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1115-1121.	0.9	14
209	Effects of Matrix Variations and the Presence of Iron on Matrix-assisted Laser Desorption/Ionization Mass Spectra of DNA. Rapid Communications in Mass Spectrometry, 1996, 10, 1980-1986.	1.5	14
210	Molecular Parasites That Evolve Longer Genomes. Journal of Molecular Evolution, 1999, 49, 656-663.	1.8	14
211	Switching nucleic acids for antibodies. Nature Biotechnology, 2001, 19, 313-314.	17.5	14
212	Industrialization of Biology. ACS Synthetic Biology, 2015, 4, 1053-1055.	3.8	14
213	A microbial model of economic trading and comparative advantage. Journal of Theoretical Biology, 2015, 364, 326-343.	1.7	14
214	Expanded Genetic Codes Create New Mutational Routes to Rifampicin Resistance in <i>Escherichia coli</i> . Molecular Biology and Evolution, 2016, 33, 2054-2063.	8.9	14
215	Directed Evolution of an Improved Aminoacylâ€ŧRNA Synthetase for Incorporation of Lâ€3,4â€Dihydroxyphenylalanine (Lâ€DOPA). Angewandte Chemie - International Edition, 2021, 60, 14811-14816	5.13.8	14
216	Charge Engineering Improves the Performance of Bst DNA Polymerase Fusions. ACS Synthetic Biology, 2022, 11, 1488-1496.	3.8	14

#	Article	lF	Citations
217	EVOLUTION: Changing the Cofactor Diet of an Enzyme. Science, 2005, 310, 454-455.	12.6	13
218	In Vitro Selection of RNA Aptamers to a Small Molecule Target. Current Protocols in Nucleic Acid Chemistry, 2010, 40, Unit 9.5.1-23.	0.5	13
219	Simultaneous Detection of Different Zika Virus Lineages via Molecular Computation in a Point-of-Care Assay. Viruses, 2018, 10, 714.	3.3	13
220	<i>In Vitro</i> Transcription Networks Based on Hairpin Promoter Switches. ACS Synthetic Biology, 2018, 7, 1937-1945.	3.8	13
221	Site-specific 5-hydroxytryptophan incorporation into apolipoprotein A-I impairs cholesterol efflux activity and high-density lipoprotein biogenesis. Journal of Biological Chemistry, 2020, 295, 4836-4848.	3.4	13
222	Learning the local landscape of protein structures with convolutional neural networks. Journal of Biological Physics, 2021, 47, 435-454.	1.5	13
223	Functional expression of opioid receptors and other human GPCRs in yeast engineered to produce human sterols. Nature Communications, 2022, 13, .	12.8	13
224	In Vitro Selection of RNA Aptamers to a Protein Target by Filter Immobilization. Current Protocols in Molecular Biology, 2000, 52, Unit 24.3.	2.9	12
225	Directed Evolution of Proteins In Vitro Using Compartmentalization in Emulsions. Current Protocols in Molecular Biology, 2009, 87, Unit 24.6.	2.9	12
226	Ribosome-mediated incorporation of fluorescent amino acids into peptides <i>in vitro</i> . Chemical Communications, 2021, 57, 2661-2664.	4.1	12
227	Aptamer Antagonists of Myelin-Derived Inhibitors Promote Axon Growth. PLoS ONE, 2010, 5, e9726.	2.5	11
228	Synthesis of alanyl nucleobase amino acids and their incorporation into proteins. Bioorganic and Medicinal Chemistry, 2016, 24, 4177-4187.	3.0	11
229	Systematic Review of Aptamer Sequence Reporting in the Literature Reveals Widespread Unexplained Sequence Alterations. Analytical Chemistry, 2022, 94, 7731-7737.	6.5	11
230	Return of the 'last ribo-organism'. Nature, 1988, 332, 688-689.	27.8	10
231	Back to the future of nucleic acid self-amplification. Nature Chemical Biology, 2009, 5, 200-201.	8.0	10
232	A highly parallel strategy for storage of digital information in living cells. BMC Biotechnology, 2018, 18, 64.	3.3	10
233	Bringing Microscopy-By-Sequencing into View. Trends in Biotechnology, 2020, 38, 154-162.	9.3	10
234	How a B family DNA polymerase has been evolved to copy RNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21274-21280.	7.1	10

#	Article	IF	CITATIONS
235	Guiding Ethical Principles in Engineering Biology Research. ACS Synthetic Biology, 2021, 10, 907-910.	3.8	10
236	Using in vitro nucleic acid selections for conventional drug design. Drug Development Research, 1994, 33, 102-115.	2.9	9
237	An in vitro selection for small molecule induced switching RNA molecules. Methods, 2016, 106, 51-57.	3.8	9
238	Producing molecular biology reagents without purification. PLoS ONE, 2021, 16, e0252507.	2.5	9
239	Analyzing machupo virus-receptor binding by molecular dynamics simulations. PeerJ, 2014, 2, e266.	2.0	9
240	Exquisite allele discrimination by toehold hairpin primers. Nucleic Acids Research, 2014, 42, e120-e120.	14.5	8
241	One-step tumor detection from dynamic morphology tracking on aptamer-grafted surfaces. Technology, 2015, 03, 194-200.	1.4	8
242	Design, Synthesis, and Application of Spinach Molecular Beacons Triggered by Strand Displacement. Methods in Enzymology, 2015, 550, 215-249.	1.0	8
243	The Design Space of Strand Displacement Cascades with Toehold-Size Clamps. Lecture Notes in Computer Science, 2017, , 64-81.	1.3	8
244	Evolving Bacterial Fitness with an Expanded Genetic Code. Scientific Reports, 2018, 8, 3288.	3.3	8
245	Characteristics of Amino Acids. Current Protocols in Molecular Biology, 1996, 33, Appendix 1C.	2.9	7
246	DNA shuffling brigthens prospects for GFP. Nature Biotechnology, 1996, 14, 366-366.	17.5	7
247	How to make a nucleotide. Nature, 1998, 395, 223-225.	27.8	7
248	In Vitro Selection of RNA Aptamers to a Protein Target by Filter Immobilization. Current Protocols in Nucleic Acid Chemistry, 2000, 00, Unit 9.3.	0.5	7
249	Aptazymes: Allosteric Ribozymes and Deoxyribozymes as Biosensors. , 2006, , 290-310.		7
250	What's So Great about RNA?. ACS Chemical Biology, 2007, 2, 445-448.	3.4	7
251	Aptamer amplification: divide and signal. Expert Opinion on Medical Diagnostics, 2008, 2, 1333-1346.	1.6	7
252	In Vitro Selection of RNA Aptamers to a Protein Target by Filter Immobilization. Current Protocols in Molecular Biology, 2010, 89, Unit 24.3.	2.9	7

#	Article	IF	CITATIONS
253	In Vitro Selection of RNA Aptamers to a Protein Target by Filter Immobilization. Current Protocols in Nucleic Acid Chemistry, 2010, 40, Unit 9.3.1-27.	0.5	7
254	Origins for Everyone. Evolution: Education and Outreach, 2012, 5, 361-366.	0.8	7
255	Selection of self-priming molecular replicators. Nucleic Acids Research, 2019, 47, 2169-2176.	14.5	7
256	Chemical insights into flexizyme-mediated tRNA acylation. Cell Chemical Biology, 2022, 29, 1071-1112.	5.2	7
257	Compartmentalized Selfâ€Replication for Evolution of a DNA Polymerase. Current Protocols in Chemical Biology, 2018, 10, 1-17.	1.7	6
258	Directed Evolution of an Improved Aminoacylâ€ŧRNA Synthetase for Incorporation of Lâ€3,4â€Dihydroxyphenylalanine (Lâ€DOPA). Angewandte Chemie, 2021, 133, 14937-14942.	2.0	6
259	Aptamers as Emerging Probes for Macromolecular Sensing. , 2005, , 127-155.		6
260	Nucleic Acids for Reagentless Biosensors. , 2002, , 369-396.		6
261	Making Security Viral: Shifting Engineering Biology Culture and Publishing. ACS Synthetic Biology, 2022, 11, 522-527.	3.8	6
262	Incorporation of $5\hat{a}\in^2$ -N-BOC- $2\hat{a}\in^2$, $5\hat{a}\in^2$ -Dideoxynucleoside- $3\hat{a}\in^2$ -O-Phosphoramidites Into Oligonucleotides by Automated Synthesis. Nucleosides & Nucleotides, 1997, 16, 1821-1836.	0.5	5
263	Nextâ€Generation Sequencing as Input for Chemometrics in Differential Sensing Routines. Angewandte Chemie - International Edition, 2015, 54, 6339-6342.	13.8	5
264	Employing 25-Residue Docking Motifs from Modular Polyketide Synthases as Orthogonal Protein Connectors. ACS Synthetic Biology, 2019, 8, 2017-2024.	3.8	5
265	Virus wars: using one virus to block the spread of another. PeerJ, 2016, 4, e2166.	2.0	5
266	Biocompatible Materials Enabled by Biobased Production of Pyomelanin Isoforms Using an Engineered <i>Yarrowia lipolytica</i> Advanced Functional Materials, 2022, 32, 2109366.	14.9	5
267	Progress Report on the Generation of Polyfunctional Microscale Particles for Programmed Self-Assembly. Chemistry of Materials, 2014, 26, 1457-1462.	6.7	4
268	Modeling scalable pattern generation in DNA reaction networks. Natural Computing, 2014, 13, 583-595.	3.0	4
269	Heat Adaptation of Phage T7 Under an Extended Genetic Code. Virus Evolution, 2021, 7, veab100.	4.9	4
270	Preparation and Use of Cellular Reagents: A Lowâ€resource Molecular Biology Reagent Platform. Current Protocols, 2022, 2, e387.	2.9	4

#	Article	IF	Citations
271	Delineation of the Ancestral Tus-Dependent Replication Fork Trap. International Journal of Molecular Sciences, 2021, 22, 13533.	4.1	4
272	Man versus Machine versus Ribozyme. PLoS Biology, 2008, 6, e132.	5.6	3
273	NUCLEIC ACIDS FOR REAGENTLESS BIOSENSORS. , 2008, , 493-541.		3
274	Synthesis and structural analyses of phenylethynyl-substituted tris(2-pyridylmethyl)amines and their copper(ii) complexes. Dalton Transactions, 2016, 45, 10585-10598.	3.3	3
275	Aptamers in Education: Undergraduates Make Aptamers and Acquire 21st Century Skills Along the Way. Sensors, 2019, 19, 3270.	3.8	3
276	Minimizing Leakage in Stacked Strand Exchange Amplification Circuits. ACS Synthetic Biology, 2021, 10, 1277-1283.	3.8	3
277	Recovery of Information Stored in Modified DNA with an Evolved Polymerase. ACS Synthetic Biology, 2022, 11, 554-561.	3.8	3
278	Prospects for the De Novo Design of Nucleic Acid Biosensors. , 2005, , 5-43.		2
279	Design and Selection of a Synthetic Operon. ACS Synthetic Biology, 2014, 3, 410-415.	3.8	2
280	Landscape-Based Biology. Journal of Molecular Evolution, 2015, 81, 144-145.	1.8	2
281	Controlled Assembly of Artificial Protein–Protein Complexes via DNA Duplex Formation. Bioconjugate Chemistry, 2015, 26, 427-434.	3.6	2
282	Six pack and stack. Nature Chemistry, 2015, 7, 617-619.	13.6	2
283	Viral attenuation by engineered protein fragmentation. Virus Evolution, 2018, 4, vey017.	4.9	2
284	Reprogramming the brain with synthetic neurobiology. Current Opinion in Biotechnology, 2019, 58, 37-44.	6.6	2
285	Synthesis of Ferrocene Derivatives Allowing Linear Free Energy Studies of Redox Potentials. Helvetica Chimica Acta, 2019, 102, e1800186.	1.6	2
286	Survival and polymerase chain reaction-based detection of nucleic acid taggant markers during bacterial growth and sterilization. Analytica Chimica Acta, 2003, 475, 67-73.	5.4	1
287	Predicting Evolution of the Transcription Regulatory Network in a Bacteriophage. Genome Biology and Evolution, 2018, 10, 2614-2628.	2.5	1
288	Hurdling and Hurtling Toward New Genetic Codes. ACS Central Science, 2021, 7, 7-10.	11.3	1

#	Article	IF	CITATIONS
289	Systematic profiling of cellular phenotypes with spotted cell microarrays reveals new mating pheromone response genes. FASEB Journal, 2006, 20, A928.	0.5	1
290	Synthetic GPCRs and signal transduction cascades. Emerging Topics in Life Sciences, 2019, 3, 609-614.	2.6	1
291	Emulsion-based directed evolution of enzymes and proteins in yeast. Methods in Enzymology, 2020, 643, 87-110.	1.0	1
292	Developing predictive hybridization models for phosphorothioate oligonucleotides using high-resolution melting. PLoS ONE, 2022, 17, e0268575.	2.5	1
293	Synthetic Biology Design and Analysis: A Case Study of Frequency Entrained Biological Clock. , 2008, , .		0
294	Continuous <i>In Vitro</i> evolution of a ribozyme ligase: A model experiment for the evolution of a biomolecule. Biochemistry and Molecular Biology Education, 2013, 41, 433-442.	1.2	0
295	RNA as a conception. Rna, 2015, 21, 608-608.	3.5	0
296	Design and engineering of a transmissible antiviral defense. Journal of Biological Engineering, 2016, 10, 12.	4.7	0
297	Systematic profiling of cellular phenotypes and gene function using spotted cellular microarrays. FASEB Journal, 2006, 20, LB61.	0.5	0
298	Aptamer Microarrays., 2009,, 287-308.		0
299	Ribozymes as Molecular Biology Reagents. , 2012, , 293-312.		0
300	STANDARD MEASUREMENTS, DATA, AND ABBREVIATIONS. Current Protocols in Molecular Biology, 1990, 12, A.1.1-A.1.32.	2.9	0
301	Alternative ELISA Using a RNA Aptamer against Calf Intestinal Alkaline Phosphatase. FASEB Journal, 2015, 29, 562.6.	0.5	0
302	How to Balance the Many Roles of tRNAs During the Creation of New Genetic Codes. FASEB Journal, 2018, 32, 105.2.	0.5	0
303	Purification of Oligonucleotides Using Denaturing Polyacrylamide Gel Electrophoresis. Current Protocols in Molecular Biology, 1989, 6, 2.12.1-2.12.5.	2.9	0