Tanya L Leise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964914/publications.pdf Version: 2024-02-01

TANVALLEISE

#	Article	IF	CITATIONS
1	Cell-Type-Specific Circadian Bioluminescence Rhythms in <i>Dbp</i> Reporter Mice. Journal of Biological Rhythms, 2022, 37, 53-77.	2.6	7
2	Methods for Detecting PER2:LUCIFERASE Bioluminescence Rhythms in Freely Moving Mice. Journal of Biological Rhythms, 2022, 37, 78-93.	2.6	7
3	Weekend Light Shifts Evoke Persistent <i>Drosophila</i> Circadian Neural Network Desynchrony. Journal of Neuroscience, 2021, 41, 5173-5189.	3.6	9
4	Computational Analysis of PER2::LUC Imaging Data. Methods in Molecular Biology, 2021, 2130, 295-302.	0.9	1
5	Recurring circadian disruption alters circadian clock sensitivity to resetting. European Journal of Neuroscience, 2020, 51, 2343-2354.	2.6	19
6	The Clock Keeps Ticking: Circadian Rhythms of Free-Ranging Polar Bears. Journal of Biological Rhythms, 2020, 35, 180-194.	2.6	22
7	CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis. Journal of Biological Rhythms, 2020, 35, 214-222.	2.6	7
8	Dynamics and Ultradian Structure of Human Sleep in Real Life. Current Biology, 2018, 28, 49-59.e5.	3.9	51
9	mTOR signaling in VIP neurons regulates circadian clock synchrony and olfaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3296-E3304.	7.1	36
10	Network Dynamics Mediate Circadian Clock Plasticity. Neuron, 2017, 93, 441-450.	8.1	63
11	Analysis of Nonstationary Time Series for Biological Rhythms Research. Journal of Biological Rhythms, 2017, 32, 187-194.	2.6	34
12	Multi-attribute, multi-alternative models of choice: Choice, reaction time, and process tracing. Cognitive Psychology, 2017, 98, 45-72.	2.2	19
13	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
14	Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. ENeuro, 2017, 4, ENEURO.0160-17.2017.	1.9	65
15	Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics. Journal of Biological Rhythms, 2016, 31, 337-351.	2.6	8
16	The bear circadian clock doesn't â€~sleep' during winter dormancy. Frontiers in Zoology, 2016, 13, 42.	2.0	17
17	Wavelet-Based Analysis of Circadian Behavioral Rhythms. Methods in Enzymology, 2015, 551, 95-119.	1.0	25
18	Phase Resetting in Duper Hamsters. Journal of Biological Rhythms, 2015, 30, 129-143.	2.6	5

Tanya L Leise

#	Article	IF	CITATIONS
19	Neural correlates of individual differences in circadian behaviour. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150769.	2.6	21
20	Light Evokes Rapid Circadian Network Oscillator Desynchrony Followed by Gradual Phase Retuning of Synchrony. Current Biology, 2015, 25, 858-867.	3.9	58
21	Shell neurons of the master circadian clock coordinate the phase of tissue clocks throughout the brain and body. BMC Biology, 2015, 13, 43.	3.8	50
22	Circadian Rhythms of PER2::LUC in Individual Primary Mouse Hepatocytes and Cultures. PLoS ONE, 2014, 9, e87573.	2.5	42
23	Wavelet analysis of circadian and ultradian behavioral rhythms. Journal of Circadian Rhythms, 2014, 11, 5.	1.3	70
24	Making Do with Less: An Introduction to Compressed Sensing. SIAM Review, 2013, 55, 547-566.	9.5	45
25	Wavelet Meets Actogram. Journal of Biological Rhythms, 2013, 28, 62-68.	2.6	41
26	Dynamic Interactions Mediated by Nonredundant Signaling Mechanisms Couple Circadian Clock Neurons. Neuron, 2013, 80, 973-983.	8.1	179
27	Aging Differentially Affects the Re-entrainment Response of Central and Peripheral Circadian Oscillators. Journal of Neuroscience, 2012, 32, 16193-16202.	3.6	132
28	Bayesian statistical analysis of circadian oscillations in fibroblasts. Journal of Theoretical Biology, 2012, 314, 182-191.	1.7	14
29	Persistent Cell-Autonomous Circadian Oscillations in Fibroblasts Revealed by Six-Week Single-Cell Imaging of PER2::LUC Bioluminescence. PLoS ONE, 2012, 7, e33334.	2.5	82
30	Wavelet-Based Time Series Analysis of Circadian Rhythms. Journal of Biological Rhythms, 2011, 26, 454-463.	2.6	126
31	Intrinsic Regulation of Spatiotemporal Organization within the Suprachiasmatic Nucleus. PLoS ONE, 2011, 6, e15869.	2.5	94
32	A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone. International Journal of Fracture, 2010, 162, 69-76.	2.2	1
33	Impedance Imaging, Inverse Problems, and Harry Potter's Cloak. SIAM Review, 2010, 52, 359-377.	9.5	21
34	Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. European Journal of Neuroscience, 2009, 29, 171-180.	2.6	157
35	A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 69-76.	0.2	0
36	Reconsidering the boundary conditions for a dynamic, transient mode I crack problem. Journal of Mechanics of Materials and Structures, 2008, 3, 1797-1807.	0.6	2

TANYA L LEISE

#	Article	IF	CITATIONS
37	Nonlinear Oscillators at Our Fingertips. American Mathematical Monthly, 2007, 114, 14-28.	0.3	17
38	A mathematical model of the Drosophila circadian clock with emphasis on posttranslational mechanisms. Journal of Theoretical Biology, 2007, 248, 48-63.	1.7	18
39	The \$25,000,000,000 Eigenvector: The Linear Algebra behind Google. SIAM Review, 2006, 48, 569-581.	9.5	230
40	Dynamics of a Multistage Circadian System. Journal of Biological Rhythms, 2006, 21, 314-323.	2.6	25
41	An analytical and numerical study of a dynamically accelerating semi-infinite crack in a linear viscoelastic material. International Journal of Fracture, 2004, 127, 101-117.	2.2	4
42	A Method for Solving Dynamically Accelerating Crack Problems in Linear Viscoelasticity. SIAM Journal on Applied Mathematics, 2003, 64, 94-107.	1.8	5
43	A general method for solving dynamically accelerating multiple co-linear cracks. International Journal of Fracture, 2001, 111, 1-16.	2.2	6
44	Dynamically accelerating cracks part 2: a finite length mode III crack in elastic material. Quarterly of Applied Mathematics, 2001, 59, 601-614.	0.7	8