Richard Mayes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964245/publications.pdf

Version: 2024-02-01

RICHARD MAVES

#	Article	IF	CITATIONS
1	Chloride Salt Purification by Reaction With Thionyl Chloride Vapors to Remove Oxygen, Oxygenated Compounds, and Hydroxides. Frontiers in Chemical Engineering, 2022, 4, .	1.3	1
2	Insight into the Solid Electrolyte Interphase Formation in Bis(fluorosulfonyl)Imide Based Ionic Liquid Electrolytes. Advanced Functional Materials, 2021, 31, 2008708.	7.8	30
3	Combination of DGA and LN Columns: A Versatile Option for Isotope Production and Purification at Oak Ridge National Laboratory. Solvent Extraction and Ion Exchange, 2021, 39, 166-183.	0.8	3
4	Solid Electrolyte Interphases: Insight into the Solid Electrolyte Interphase Formation in Bis(fluorosulfonyl)Imide Based Ionic Liquid Electrolytes (Adv. Funct. Mater. 23/2021). Advanced Functional Materials, 2021, 31, 2170163.	7.8	0
5	Strategies toward the Synthesis of Advanced Functional Sorbent Performance for Uranium Uptake from Seawater. Industrial & Engineering Chemistry Research, 2021, 60, 15037-15044.	1.8	9
6	Thermal and radiation response of 4H–SiC Schottky diodes with direct-write electrical contacts. Applied Physics Letters, 2020, 116, .	1.5	9
7	Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers. ACS Applied Materials & Interfaces, 2020, 12, 8663-8673.	4.0	9
8	Reâ€establishing the paradigm for evaluating halide salt compatibility to study commercial chloride salts at 600°C–800°C. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1439-1449.	0.8	23
9	Enabling chloride salts for thermal energy storage: implications of salt purity. RSC Advances, 2019, 9, 25602-25608.	1.7	55
10	Amorphous and partially-amorphous metal coatings for corrosion resistance in molten chloride salt. Solar Energy Materials and Solar Cells, 2019, 201, 110028.	3.0	28
11	Fabrication of a Pillared ZSM-5 Framework for Shape Selectivity of Ethane Dehydroaromatization. Industrial & Engineering Chemistry Research, 2019, 58, 7094-7106.	1.8	19
12	Siderophore-inspired chelator hijacks uranium from aqueous medium. Nature Communications, 2019, 10, 819.	5.8	84
13	Hierarchical TiO ₂ :Cu ₂ O Nanostructures for Gas/Vapor Sensing and CO ₂ Sequestration. ACS Applied Materials & Interfaces, 2019, 11, 48466-48475.	4.0	18
14	Seawater desalination by over-potential membrane capacitive deionization: Opportunities and hurdles. Chemical Engineering Journal, 2019, 357, 103-111.	6.6	90
15	Electrosorption of organic acids from aqueous bio-oil and conversion into hydrogen via microbial electrolysis cells. Renewable Energy, 2018, 125, 21-31.	4.3	25
16	Fibers with Hyper rosslinked Functional Porous Frameworks. Macromolecular Rapid Communications, 2018, 39, 1700767.	2.0	8
17	Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 11008-11017.	4.0	57
18	Bicarbonate Elution of Uranium from Amidoximeâ€Based Polymer Adsorbents for Sequestering Uranium from Seawater. ChemistrySelect, 2017, 2, 3769-3774.	0.7	27

RICHARD MAYES

#	Article	IF	CITATIONS
19	Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization. Industrial & Engineering Chemistry Research, 2017, 56, 10826-10832.	1.8	36
20	Investigations into the Reusability of Amidoxime-Based Polymeric Adsorbents for Seawater Uranium Extraction. Industrial & Engineering Chemistry Research, 2017, 56, 11603-11611.	1.8	38
21	Materials for the Recovery of Uranium from Seawater. Chemical Reviews, 2017, 117, 13935-14013.	23.0	639
22	Impact of Pore Size on the Sorption of Uranyl under Seawater Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 4339-4343.	1.8	18
23	Significantly increasing porosity of mesoporous carbon by NaNH2 activation for enhanced CO2 adsorption. Microporous and Mesoporous Materials, 2016, 230, 100-108.	2.2	47
24	A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer. Physical Chemistry Chemical Physics, 2016, 18, 23462-23468.	1.3	13
25	Extracting Uranium from Seawater: Promising AF Series Adsorbents. Industrial & Engineering Chemistry Research, 2016, 55, 4110-4117.	1.8	136
26	Extracting Uranium from Seawater: Promising Al Series Adsorbents. Industrial & Engineering Chemistry Research, 2016, 55, 4103-4109.	1.8	114
27	XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies. Energy and Environmental Science, 2016, 9, 448-453.	15.6	115
28	Acidity of the Poly(acrylamidoxime) Adsorbent in Aqueous Solution: Determination of the Proton Affinity Distribution via Potentiometric Titrations. Industrial & Engineering Chemistry Research, 2016, 55, 4217-4223.	1.8	23
29	Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater. Industrial & Engineering Chemistry Research, 2016, 55, 4313-4320.	1.8	65
30	Characterization and Testing of Amidoxime-Based Adsorbent Materials to Extract Uranium from Natural Seawater. Industrial & Engineering Chemistry Research, 2016, 55, 4285-4293.	1.8	56
31	The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies. Industrial & Engineering Chemistry Research, 2016, 55, 4264-4277.	1.8	107
32	Analysis and simulation of a blue energy cycle. Renewable Energy, 2016, 91, 249-260.	4.3	14
33	Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl) Tj ETQq1 Engineering Chemistry Research, 2016, 55, 4139-4148.	l 0.784314 1.8	rgBT /Over 128
34	Quantifying the binding strength of salicylaldoxime–uranyl complexes relative to competing salicylaldoxime–transition metal ion complexes in aqueous solution: a combined experimental and computational study. Dalton Transactions, 2016, 45, 9051-9064.	1.6	23
35	Experiments and Modeling of Uranium Uptake by Amidoxime-Based Adsorbent in the Presence of Other Ions in Simulated Seawater. Industrial & Engineering Chemistry Research, 2016, 55, 4241-4248.	1.8	34
36	Synthesis of Naphthalimidedioxime Ligand-Containing Fibers for Uranium Adsorption from Seawater. Industrial & Engineering Chemistry Research, 2016, 55, 4161-4169.	1.8	40

RICHARD MAYES

#	Article	IF	CITATIONS
37	A Poly(acrylonitrile)-Functionalized Porous Aromatic Framework Synthesized by Atom-Transfer Radical Polymerization for the Extraction of Uranium from Seawater. Industrial & Engineering Chemistry Research, 2016, 55, 4125-4129.	1.8	58
38	Enhancing Uranium Uptake by Amidoxime Adsorbent in Seawater: An Investigation for Optimum Alkaline Conditioning Parameters. Industrial & Engineering Chemistry Research, 2016, 55, 4294-4302.	1.8	58
39	Alternative Alkaline Conditioning of Amidoxime Based Adsorbent for Uranium Extraction from Seawater. Industrial & Engineering Chemistry Research, 2016, 55, 4303-4312.	1.8	55
40	Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors. Microporous and Mesoporous Materials, 2016, 222, 94-103.	2.2	86
41	Acidâ€Functionalized Mesoporous Carbon: An Efficient Support for Rutheniumâ€Catalyzed γâ€Valerolactone Production. ChemSusChem, 2015, 8, 2520-2528.	3.6	58
42	The electrochemical reactions of SnO2 with Li and Na: A study using thin films and mesoporous carbons. Journal of Power Sources, 2015, 284, 1-9.	4.0	27
43	Transport of Ions in Mesoporous Carbon Electrodes during Capacitive Deionization of High-Salinity Solutions. Langmuir, 2015, 31, 1038-1047.	1.6	56
44	Macroporous monoliths for trace metal extraction from seawater. RSC Advances, 2015, 5, 50005-50010.	1.7	28
45	An efficient low-temperature route to nitrogen-doping and activation of mesoporous carbons for CO ₂ capture. Chemical Communications, 2015, 51, 17261-17264.	2.2	47
46	Enhancement of electrosorption rates using low-amplitude, high-frequency, pulsed electrical potential. Separation and Purification Technology, 2014, 129, 18-24.	3.9	10
47	A non-micellar synthesis of mesoporous carbon via spinodal decomposition. RSC Advances, 2014, 4, 23703-23706.	1.7	4
48	Uptake of Uranium from Seawater by Amidoxime-Based Polymeric Adsorbent: Field Experiments, Modeling, and Updated Economic Assessment. Industrial & Engineering Chemistry Research, 2014, 53, 6076-6083.	1.8	185
49	Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. Journal of Materials Chemistry A, 2014, 2, 14674-14681.	5.2	138
50	Enhanced CO2/N2 selectivity in amidoxime-modified porous carbon. Carbon, 2014, 67, 457-464.	5.4	92
51	Recovery of Uranium from Seawater: A Review of Current Status and Future Research Needs. Separation Science and Technology, 2013, 48, 367-387.	1.3	400
52	Influence of temperature on the electrosorption of ions from aqueous solutions using mesoporous carbon materials. Separation and Purification Technology, 2013, 116, 206-213.	3.9	24
53	Seawater Uranium Sorbents: Preparation from a Mesoporous Copolymer Initiator by Atomâ€Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2013, 52, 13458-13462.	7.2	222
54	Polymer-coated nanoporous carbons for trace seawater uranium adsorption. Science China Chemistry, 2013, 56, 1510-1515.	4.2	44

RICHARD MAYES

#	Article	IF	CITATIONS
55	Neutron imaging of ion transport in mesoporous carbon materials. Physical Chemistry Chemical Physics, 2013, 15, 11740.	1.3	17
56	Fluorination of "brick and mortar―soft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery. Journal of Materials Chemistry A, 2013, 1, 9414.	5.2	23
57	Sonochemical functionalization of mesoporous carbon for uranium extraction from seawater. Journal of Materials Chemistry A, 2013, 1, 3016.	5.2	132
58	Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. Journal of Materials Chemistry A, 2013, 1, 7920.	5.2	120
59	Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF. Journal of Energy Chemistry, 2013, 22, 305-311.	7.1	44
60	Characterization of Uranium Uptake Kinetics from Seawater in Batch and Flow-Through Experiments. Industrial & Engineering Chemistry Research, 2013, 52, 9433-9440.	1.8	72
61	Lithium–Sulfur Batteries Based on Nitrogenâ€Doped Carbon and an Ionicâ€Liquid Electrolyte. ChemSusChem, 2012, 5, 2079-2085.	3.6	187
62	"One-pot―synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity. Catalysis Today, 2012, 186, 12-19.	2.2	22
63	Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Physical Chemistry Chemical Physics, 2011, 13, 13486.	1.3	98
64	Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery. Chemistry of Materials, 2011, 23, 4420-4427.	3.2	102
65	Phosphorylated mesoporous carbon as a solid acid catalyst. Physical Chemistry Chemical Physics, 2011, 13, 2492-2494.	1.3	26
66	Mesoporous Carbon for Capacitive Deionization of Saline Water. Environmental Science & Technology, 2011, 45, 10243-10249.	4.6	351
67	"Brickâ€andâ€Mortar―Selfâ€Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Advanced Functional Materials, 2011, 21, 2208-2215.	7.8	98
68	Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials, 2011, 23, 4828-4850.	11.1	2,593
69	The targeted synthesis of single site vanadyl species on the surface and in the framework of silicate building block materials. Catalysis Today, 2011, 160, 153-164.	2.2	8
70	Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon, 2010, 48, 3364-3368.	5.4	74
71	Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water. Journal of Materials Chemistry, 2010, 20, 8674.	6.7	169
72	Advanced Polymer Sorbents: Performance for Lower V/U Adsorption in Natural Seawater. SSRN Electronic Journal, 0, , .	0.4	0