Laurent J Brochard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA - Journal of the American Medical Association, 2016, 315, 788.	7.4	3,568
2	Driving Pressure and Survival in the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2015, 372, 747-755.	27.0	1,905
3	Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 1995, 333, 817-822.	27.0	1,826
4	Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2018, 378, 1965-1975.	27.0	1,563
5	Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2010, 303, 865.	7.4	1,192
6	Evolution of Mechanical Ventilation in Response to Clinical Research. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 170-177.	5.6	1,133
7	Positive End-Expiratory Pressure Setting in Adults With Acute Lung Injury and Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2008, 299, 646.	7.4	1,104
8	An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1253-1263.	5.6	1,104
9	Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. European Respiratory Journal, 2017, 50, 1602426.	6.7	1,014
10	A Multicenter Randomized Trial of Computer-driven Protocolized Weaning from Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 894-900.	5.6	914
11	Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 438-442.	5.6	846
12	Inspiratory Pressure Support Prevents Diaphragmatic Fatigue during Weaning from Mechanical Ventilation. The American Review of Respiratory Disease, 1989, 139, 513-521.	2.9	556
13	Formal guidelines: management of acute respiratory distress syndrome. Annals of Intensive Care, 2019, 9, 69.	4.6	478
14	Effects of Recruiting Maneuvers in Patients with Acute Respiratory Distress Syndrome Ventilated with Protective Ventilatory Strategy. Anesthesiology, 2002, 96, 795-802.	2.5	462
15	The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 520-531.	5.6	443
16	Mechanical Ventilation–induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 204-213.	5.6	441
17	Extracorporeal Membrane Oxygenation for Pandemic Influenza A(H1N1)–induced Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 276-285.	5.6	440
18	Position Paper for the Organization of Extracorporeal Membrane Oxygenation Programs for Acute Respiratory Failure in Adult Patients. American Journal of Respiratory and Critical Care Medicine, 2014, 190. 488-496.	5.6	400

#	Article	IF	CITATIONS
19	Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1080-1088.	5.6	391
20	COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted?. Lancet Respiratory Medicine,the, 2020, 8, 816-821.	10.7	375
21	Pressure–Volume Curves and Compliance in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 1172-1178.	5.6	371
22	Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure. Critical Care Medicine, 2016, 44, 282-290.	0.9	363
23	Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Medicine, 2016, 42, 1360-1373.	8.2	352
24	Coexistence and Impact of Limb Muscle and Diaphragm Weakness at Time of Liberation from Mechanical Ventilation in Medical Intensive Care Unit Patients. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 57-66.	5.6	322
25	Epidemiology of Weaning Outcome according to a New Definition. The WIND Study. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 772-783.	5.6	291
26	Lung Recruitability in COVID-19–associated Acute Respiratory Distress Syndrome: A Single-Center Observational Study. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1294-1297.	5.6	257
27	Mechanical Ventilation-Induced Reverse-Triggered Breaths. Chest, 2013, 143, 927-938.	0.8	251
28	Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Medicine, 2016, 42, 1865-1876.	8.2	247
29	Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Medicine, 2008, 34, 1477-1486.	8.2	223
30	Critical illness-associated diaphragm weakness. Intensive Care Medicine, 2017, 43, 1441-1452.	8.2	221
31	Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 178-187.	5.6	197
32	Mechanical Ventilation: State of the Art. Mayo Clinic Proceedings, 2017, 92, 1382-1400.	3.0	191
33	The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive Care Medicine, 2020, 46, 2226-2237.	8.2	185
34	Effect of non-invasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial. Lancet Respiratory Medicine,the, 2016, 4, 646-652.	10.7	183
35	Patient-Ventilator Asynchrony During Noninvasive Ventilation. Chest, 2012, 142, 367-376.	0.8	181
36	Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Medicine, 2009, 35, 1850-1858.	8.2	177

#	Article	IF	CITATIONS
37	Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Medicine, 2017, 43, 200-208.	8.2	168
38	Lung- and Diaphragm-Protective Ventilation. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 950-961.	5.6	166
39	Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1018-1026.	5.6	161
40	Respiratory Drive in Critically III Patients. Pathophysiology and Clinical Implications. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 20-32.	5.6	151
41	Ventilatory Variables and Mechanical Power in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 303-311.	5.6	148
42	Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome*. Critical Care Medicine, 2010, 38, 1786-1792.	0.9	145
43	Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respiratory Medicine,the, 2019, 7, 90-98.	10.7	139
44	High-flow nasal oxygen in patients with COVID-19-associated acute respiratory failure. Critical Care, 2021, 25, 58.	5.8	138
45	Venovenous extracorporeal membrane oxygenation for acute respiratory failure. Intensive Care Medicine, 2016, 42, 712-724.	8.2	136
46	F <scp>ifty</scp> Y <scp>ears of</scp> R <scp>esearch in</scp> ARDS.Respiratory Mechanics in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 822-833.	5.6	134
47	Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Critical Care, 2020, 24, 529.	5.8	128
48	Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method. Critical Care, 2021, 25, 106.	5.8	121
49	A knowledge-based system for assisted ventilation of patients in intensive care units. Journal of Clinical Monitoring and Computing, 1992, 9, 239-250.	0.3	116
50	Pressure-Controlled vs Volume-Controlled Ventilation in Acute Respiratory Failure. Chest, 2015, 148, 340-355.	0.8	111
51	Clinical challenges in mechanical ventilation. Lancet, The, 2016, 387, 1856-1866.	13.7	107
52	Effort to Breathe with Various Spontaneous Breathing Trial Techniques. A Physiologic Meta-analysis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1477-1485.	5.6	107
53	Mechanical Ventilation for Acute Respiratory Distress Syndrome during Extracorporeal Life Support. Research and Practice. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 514-525.	5.6	105
54	Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Medicine, 2020, 46, 2314-2326.	8.2	105

#	Article	IF	CITATIONS
55	A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Critical Care, 2019, 23, 346.	5.8	104
56	Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?. JAMA - Journal of the American Medical Association, 2020, 323, 2265.	7.4	101
57	ECMO for ARDS: from salvage to standard of care?. Lancet Respiratory Medicine,the, 2019, 7, 108-110.	10.7	98
58	Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing. Current Opinion in Critical Care, 2020, 26, 59-65.	3.2	96
59	Geo-economic variations in epidemiology, patterns of care, and outcomes in patients with acute respiratory distress syndrome: insights from the LUNG SAFE prospective cohort study. Lancet Respiratory Medicine,the, 2017, 5, 627-638.	10.7	93
60	Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Critical Care, 2017, 21, 240.	5.8	84
61	Noninvasive Ventilation for Acute Respiratory Failure. JAMA - Journal of the American Medical Association, 2002, 288, 932.	7.4	82
62	Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare). Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2009, 23, 81-93.	4.0	81
63	In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Critical Care, 2016, 20, 98.	5.8	80
64	Transpulmonary pressure: importance and limits. Annals of Translational Medicine, 2017, 5, 285-285.	1.7	80
65	Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: Yes. Intensive Care Medicine, 2017, 43, 250-252.	8.2	78
66	Expiratory muscle dysfunction in critically ill patients: towards improved understanding. Intensive Care Medicine, 2019, 45, 1061-1071.	8.2	74
67	Alveolar Recruitment in Pulmonary and Extrapulmonary Acute Respiratory Distress Syndrome. Anesthesiology, 2007, 106, 212-217.	2.5	72
68	Noninvasive Ventilation for Patients with Hypoxemic Acute Respiratory Failure. Seminars in Respiratory and Critical Care Medicine, 2014, 35, 492-500.	2.1	71
69	The airway occlusion pressure (P0.1) to monitor respiratory drive during mechanical ventilation: increasing awareness of a not-so-new problem. Intensive Care Medicine, 2018, 44, 1532-1535.	8.2	69
70	Asynchrony Consequences and Management. Critical Care Clinics, 2018, 34, 325-341.	2.6	68
71	Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study*. Critical Care Medicine, 2019, 47, 229-238.	0.9	68
72	Clinical review: Update on neurally adjusted ventilatory assist - report of a round-table conference. Critical Care, 2012, 16, 225.	5.8	66

#	Article	IF	CITATIONS
73	Ventilator-Associated Pneumonia During Weaning From Mechanical Ventilation. Chest, 2014, 146, 58-65.	0.8	65
74	Easily identified at-risk patients for extubation failure may benefit from noninvasive ventilation: a prospective before-after study. Critical Care, 2016, 20, 48.	5.8	65
75	Aerosol therapy in intensive and intermediate care units: prospective observation of 2808 critically ill patients. Intensive Care Medicine, 2016, 42, 192-201.	8.2	63
76	Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respiratory Medicine,the, 2018, 6, 874-884.	10.7	62
77	Bedside Adjustment of Proportional Assist Ventilation to Target a Predefined Range of Respiratory Effort*. Critical Care Medicine, 2013, 41, 2125-2132.	0.9	59
78	Delirium and Circadian Rhythm of Melatonin During Weaning From Mechanical Ventilation. Chest, 2015, 148, 1231-1241.	0.8	59
79	Description and Microbiology of Endotracheal Tube Biofilm in Mechanically Ventilated Subjects. Respiratory Care, 2015, 60, 21-29.	1.6	59
80	Comorbidities and Subgroups of Patients Surviving Severe Acute Hypercapnic Respiratory Failure in the Intensive Care Unit. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 200-207.	5.6	59
81	International Practice Variation in Weaning Critically III Adults from Invasive Mechanical Ventilation. Annals of the American Thoracic Society, 2018, 15, 494-502.	3.2	55
82	Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Annals of Intensive Care, 2017, 7, 100.	4.6	52
83	ls my patient's respiratory drive (too) high?. Intensive Care Medicine, 2018, 44, 1936-1939.	8.2	52
84	Effects of high-flow nasal cannula and non-invasive ventilation on inspiratory effort in hypercapnic patients with chronic obstructive pulmonary disease: a preliminary study. Annals of Intensive Care, 2019, 9, 122.	4.6	52
85	Association of Low Baseline Diaphragm Muscle Mass With Prolonged Mechanical Ventilation and Mortality Among Critically III Adults. JAMA Network Open, 2020, 3, e1921520.	5.9	52
86	Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome. European Respiratory Review, 2015, 24, 132-140.	7.1	50
87	Expiratory Flow Limitation During Mechanical Ventilation. Chest, 2018, 154, 948-962.	0.8	49
88	Mechanical Ventilation in Adults with Acute Respiratory Distress Syndrome. Summary of the Experimental Evidence for the Clinical Practice Guideline. Annals of the American Thoracic Society, 2017, 14, S261-S270.	3.2	47
89	Comparison Between Neurally Adjusted Ventilatory Assist and Pressure Support Ventilation Levels in Terms of Respiratory Effort. Critical Care Medicine, 2016, 44, 503-511.	0.9	46
90	Positive End-Expiratory Pressure, Pleural Pressure, and Regional Compliance during Pronation. An Experimental Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1266-1274.	5.6	46

#	Article	IF	CITATIONS
91	Abnormal Sleep, Circadian Rhythm Disruption, and Delirium in the ICU: Are They Related?. Frontiers in Neurology, 2020, 11, 549908.	2.4	43
92	What is the proper approach to liberating the weak from mechanical ventilation?. Critical Care Medicine, 2009, 37, S410-S415.	0.9	42
93	Intrathoracic Airway Closure Impacts CO ₂ Signal and Delivered Ventilation during Cardiopulmonary Resuscitation. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 728-737.	5.6	42
94	Etiologies, diagnostic work-up and outcomes of acute respiratory distress syndrome with no common risk factor: a prospective multicenter study. Annals of Intensive Care, 2017, 7, 69.	4.6	41
95	Impact of ventilation strategies during chest compression. An experimental study with clinical observations. Journal of Applied Physiology, 2016, 120, 196-203.	2.5	40
96	High-Flow Nasal Cannula in the Immediate Postoperative Period. Chest, 2020, 158, 1934-1946.	0.8	39
97	Static lung storage at 10°C maintains mitochondrial health and preserves donor organ function. Science Translational Medicine, 2021, 13, eabf7601.	12.4	39
98	Outcome of acute hypoxaemic respiratory failure: insights from the LUNG SAFE Study. European Respiratory Journal, 2021, 57, 2003317.	6.7	39
99	Beyond the guidelines for non-invasive ventilation in acute respiratory failure: implications for practice. Lancet Respiratory Medicine,the, 2018, 6, 935-947.	10.7	37
100	Association of Positive End-Expiratory Pressure and Lung Recruitment Selection Strategies with Mortality in Acute Respiratory Distress Syndrome: A Systematic Review and Network Meta-analysis. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1300-1310.	5.6	37
101	Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome. Critical Care, 2017, 21, 84.	5.8	35
102	Effects of inspiratory pause on CO2 elimination and arterial Pco2 in acute lung injury. Journal of Applied Physiology, 2008, 105, 1944-1949.	2.5	34
103	Dyspnoea and respiratory muscle ultrasound to predict extubation failure. European Respiratory Journal, 2021, 58, 2100002.	6.7	34
104	Prevalence of Complete Airway Closure According to Body Mass Index in Acute Respiratory Distress Syndrome. Anesthesiology, 2020, 133, 867-878.	2.5	34
105	Searching for evidence: don't forget the foundations. Intensive Care Medicine, 2003, 29, 2109-2111.	8.2	33
106	High-flow nasal oxygen versus noninvasive ventilation in adult patients with cystic fibrosis: a randomized crossover physiological study. Annals of Intensive Care, 2018, 8, 85.	4.6	32
107	High-Flow Nasal Cannula Compared With Conventional Oxygen Therapy or Noninvasive Ventilation Immediately Postextubation: A Systematic Review and Meta-Analysis. Critical Care Medicine, 2020, 48, e1129-e1136.	0.9	32
108	Noninvasive respiratory support following extubation in critically ill adults: a systematic review and network meta-analysis. Intensive Care Medicine, 2022, 48, 137-147.	8.2	32

#	Article	IF	CITATIONS
109	A new physiological model for studying the effect of chest compression and ventilation during cardiopulmonary resuscitation: The Thiel cadaver. Resuscitation, 2018, 125, 135-142.	3.0	31
110	Ventilator-Integrated Jet Nebulization Systems: Tidal Volume Control and Efficiency of Synchronization. Respiratory Care, 2014, 59, 1508-1516.	1.6	30
111	Esophageal pressure monitoring. Current Opinion in Critical Care, 2018, 24, 216-222.	3.2	30
112	Moderate Certainty Evidence Suggests the Use of High-Flow Nasal Cannula Does Not Decrease Hypoxia When Compared With Conventional Oxygen Therapy in the Peri-Intubation Period: Results of a Systematic Review and Meta-Analysis. Critical Care Medicine, 2020, 48, 571-578.	0.9	29
113	Comparing the Effects of Tidal Volume, Driving Pressure, and Mechanical Power on Mortality in Trials of Lung-Protective Mechanical Ventilation. Respiratory Care, 2021, 66, 221-227.	1.6	29
114	Partition of respiratory mechanics in patients with acute respiratory distress syndrome and association with outcome: a multicentre clinical study. Intensive Care Medicine, 2022, 48, 888-898.	8.2	29
115	Research in Extracorporeal Life Support. Chest, 2018, 153, 788-791.	0.8	28
116	Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study. Annals of Intensive Care, 2019, 9, 89.	4.6	28
117	Positive and negative effects of mechanical ventilation on sleep in the ICU: a review with clinical recommendations. Intensive Care Medicine, 2016, 42, 531-541.	8.2	27
118	Automated detection and quantification of reverse triggering effort under mechanical ventilation. Critical Care, 2021, 25, 60.	5.8	27
119	Echocardiographic detection of transpulmonary bubble transit during acute respiratory distress syndrome. Annals of Intensive Care, 2015, 5, 5.	4.6	26
120	Longitudinal changes in compliance, oxygenation and ventilatory ratio in COVID-19ÂversusÂnon-COVID-19 pulmonary acute respiratory distress syndrome. Critical Care, 2021, 25, 248.	5.8	26
121	How Ventilation Is Delivered During Cardiopulmonary Resuscitation: An International Survey. Respiratory Care, 2018, 63, 1293-1301.	1.6	25
122	Proportional modes of ventilation: technology to assist physiology. Intensive Care Medicine, 2020, 46, 2301-2313.	8.2	25
123	How to ventilate obstructive and asthmatic patients. Intensive Care Medicine, 2020, 46, 2436-2449.	8.2	25
124	Mechanism of airway closure in acute respiratory distress syndrome: a possible role of surfactant depletion. Intensive Care Medicine, 2019, 45, 290-291.	8.2	24
125	Personalized Ventilation to Multiple Patients Using a Single Ventilator: Description and Proof of Concept. , 2020, 2, e0118.		24
126	Exogenous surfactant prevents hyperoxia-induced lung injury in adult mice. Intensive Care Medicine Experimental, 2019, 7, 19.	1.9	22

#	Article	IF	CITATIONS
127	Impact of Respiratory Rate and Dead Space in the Current Era of Lung Protective Mechanical Ventilation. Chest, 2020, 158, 45-47.	0.8	22
128	Accuracy of delivered airway pressure and work of breathing estimation during proportional assist ventilation: a bench study. Annals of Intensive Care, 2016, 6, 30.	4.6	21
129	A diaphragmatic electrical activity-based optimization strategy during pressure support ventilation improves synchronization but does not impact work of breathing. Critical Care, 2017, 21, 21.	5.8	20
130	Continuous Negative Abdominal Pressure Reduces Ventilator-induced Lung Injury in a Porcine Model. Anesthesiology, 2018, 129, 163-172.	2.5	20
131	High prevalence of sleep apnea syndrome in patients admitted to ICU for acute hypercapnic respiratory failure: a preliminary study. Intensive Care Medicine, 2018, 44, 267-269.	8.2	20
132	Effects of levosimendan on respiratory muscle function in patients weaning from mechanical ventilation. Intensive Care Medicine, 2019, 45, 1372-1381.	8.2	20
133	Reverse Triggering Dyssynchrony 24 h after Initiation of Mechanical Ventilation. Anesthesiology, 2021, 134, 760-769.	2.5	20
134	The central nervous system during lung injury and mechanical ventilation: a narrative review. British Journal of Anaesthesia, 2021, 127, 648-659.	3.4	20
135	Risks and Benefits of Ultra–Lung-Protective Invasive Mechanical Ventilation Strategies with a Focus on Extracorporeal Support. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 873-882.	5.6	20
136	The Intensive Care Global Study on Severe Acute Respiratory Infection (IC-GLOSSARI): a multicenter, multinational, 14-day inception cohort study. Intensive Care Medicine, 2016, 42, 817-828.	8.2	19
137	High-Flow Versus VenturiMask Oxygen Therapy to Prevent Reintubation in Hypoxemic Patients after Extubation: A Multicenter Randomized Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1452-1462.	5.6	19
138	Ultrasound Evaluation of Diaphragm Force Reserve in Patients with Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2020, 17, 1222-1230.	3.2	18
139	Diaphragm echodensity in mechanically ventilated patients: a description of technique and outcomes. Critical Care, 2021, 25, 64.	5.8	18
140	Continuous positive airway pressure for respiratory support during COVID-19 pandemic: a frugal approach from bench to bedside. Annals of Intensive Care, 2021, 11, 38.	4.6	18
141	Airway closure, more harmful than atelectasis in intensive care?. Intensive Care Medicine, 2020, 46, 2373-2376.	8.2	17
142	Critical care journals during the COVID-19 pandemic: challenges and responsibilities. Intensive Care Medicine, 2020, 46, 1521-1523.	8.2	17
143	Lung-Protective Ventilation and Associated Outcomes and Costs Among Patients Receiving Invasive Mechanical Ventilation in the ED. Chest, 2021, 159, 606-618.	0.8	17
144	An extracellular oxygen carrier during prolonged pulmonary preservation improves post-transplant lung function. Journal of Heart and Lung Transplantation, 2020, 39, 595-603.	0.6	16

#	Article	IF	CITATIONS
145	Sigh in Patients With Acute Hypoxemic Respiratory Failure and ARDS. Chest, 2021, 159, 1426-1436.	0.8	16
146	Sedation in the intensive-care unit: good and bad?. Lancet, The, 2008, 371, 95-97.	13.7	15
147	Deoxygenation of inspiratory muscles during cycling, hyperpnoea and loaded breathing in health and disease: a systematic review. Clinical Physiology and Functional Imaging, 2018, 38, 554-565.	1.2	15
148	The physiological underpinnings of life-saving respiratory support. Intensive Care Medicine, 2022, 48, 1274-1286.	8.2	15
149	Can proportional ventilation modes facilitate exercise in critically ill patients? A physiological cross-over study. Annals of Intensive Care, 2017, 7, 64.	4.6	14
150	Acute Respiratory Distress Syndrome Cases Volume and ICU Mortality in Medical Patients. Critical Care Medicine, 2018, 46, e33-e40.	0.9	14
151	Guiding ventilation with transpulmonary pressure. Intensive Care Medicine, 2019, 45, 535-538.	8.2	14
152	Prevalence of Reverse Triggering in Early ARDS. Chest, 2021, 159, 186-195.	0.8	14
153	Abdominal Muscle Use During Spontaneous Breathing and Cough in Patients Who Are Mechanically Ventilated. Chest, 2021, 160, 1316-1325.	0.8	14
154	Duration of diaphragmatic inactivity after endotracheal intubation of critically ill patients. Critical Care, 2021, 25, 26.	5.8	14
155	Sequential lateral positioning as a new lung recruitment maneuver: an exploratory study in early mechanically ventilated Covid-19 ARDS patients. Annals of Intensive Care, 2022, 12, 13.	4.6	14
156	Impact of Reverse Triggering Dyssynchrony during Lung-Protective Ventilation on Diaphragm Function: An Experimental Model. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 663-673.	5.6	14
157	Multivariable fractional polynomial interaction to investigate continuous effect modifiers in a meta-analysis on higher versus lower PEEP for patients with ARDS. BMJ Open, 2016, 6, e011148.	1.9	13
158	Determinants of diaphragm thickening fraction during mechanical ventilation: an ancillary study of a randomised trial. European Respiratory Journal, 2017, 50, 1700783.	6.7	13
159	Continuous negative abdominal pressure: mechanism of action and comparison with prone position. Journal of Applied Physiology, 2018, 125, 107-116.	2.5	13
160	A rational approach on the use of extracorporeal membrane oxygenation in severe hypoxemia: advanced technology is not a panacea. Annals of Intensive Care, 2021, 11, 107.	4.6	13
161	Less sedation in intensive care: the pendulum swings back. Lancet, The, 2010, 375, 436-438.	13.7	12
162	Bedside Detection of Overassistance During Pressure Support Ventilation*. Critical Care Medicine, 2018, 46, 488-490.	0.9	12

#	Article	IF	CITATIONS
163	Identifying clinical subtypes in sepsis-survivors with different one-year outcomes: a secondary latent class analysis of the FROG-ICU cohort. Critical Care, 2022, 26, 114.	5.8	12
164	Ten tips to facilitate understanding and clinical use of esophageal pressure manometry. Intensive Care Medicine, 2018, 44, 220-222.	8.2	11
165	Role of Positive End-Expiratory Pressure and Regional Transpulmonary Pressure in Asymmetrical Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 969-976.	5.6	11
166	Separation from mechanical ventilation and survival after spinal cord injury: a systematic review and meta-analysis. Annals of Intensive Care, 2021, 11, 149.	4.6	11
167	Protecting lungs during spontaneous breathing: what can we do?. Journal of Thoracic Disease, 2017, 9, 2777-2781.	1.4	10
168	Identifying Subjects at Risk for Diaphragm Atrophy During Mechanical Ventilation Using Routinely Available Clinical Data. Respiratory Care, 2021, 66, 551-558.	1.6	10
169	Driving pressure monitoring during acute respiratory failure in 2020. Current Opinion in Critical Care, 2021, 27, 303-310.	3.2	10
170	Prognostic factors for development of acute respiratory distress syndrome following traumatic injury: a systematic review and meta-analysis. European Respiratory Journal, 2022, 59, 2100857.	6.7	10
171	Reliability of plateau pressure during patient-triggered assisted ventilation. Analysis of a multicentre database. Journal of Critical Care, 2022, 68, 96-103.	2.2	10
172	Setting and Titrating Positive End-Expiratory Pressure. Chest, 2022, 161, 1566-1575.	0.8	10
173	External chest-wall compression in prolonged COVID-19 ARDS with low-compliance: a physiological study. Annals of Intensive Care, 2022, 12, 35.	4.6	10
174	Physiology Is Vital to Precision Medicine in Acute Respiratory Distress Syndrome and Sepsis. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 14-16.	5.6	10
175	Acute Respiratory Distress Syndrome: Respiratory Monitoring and Pulmonary Physiology. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 066-080.	2.1	9
176	Guideline-directed management of COVID-19: Do's and Don'ts. European Respiratory Journal, 2021, 57, 2100753.	6.7	9
177	Reliability and limits of transport-ventilators to safely ventilate severe patients in special surge situations. Annals of Intensive Care, 2020, 10, 166.	4.6	9
178	Lung recruitment. Intensive Care Medicine, 2022, 48, 936-938.	8.2	9
179	Does my patient really have ARDS?. Intensive Care Medicine, 2016, 42, 656-658.	8.2	8
180	Do we need randomized clinical trials in extracorporeal respiratory support? We are not sure. Intensive Care Medicine, 2017, 43, 1869-1871.	8.2	8

#	Article	IF	CITATIONS
181	Timing of inspiratory muscle activity detected from airway pressure and flow during pressure support ventilation: the waveform method. Critical Care, 2022, 26, 32.	5.8	8
182	Double triggering during assisted mechanical ventilation: Is it aÂcontrolled, auto-triggered or patient-triggered cycle? Reply to CW. Chen. Intensive Care Medicine, 2007, 33, 744-745.	8.2	7
183	Rethinking Inspiratory Pressure Augmentation in Spontaneous Breathing Trials. Chest, 2017, 151, 1399-1400.	0.8	7
184	A physiology-based mathematical model for the selection of appropriate ventilator controls for lung and diaphragm protection. Journal of Clinical Monitoring and Computing, 2021, 35, 363-378.	1.6	7
185	One-Year Readmission Following Undifferentiated Acute Hypercapnic Respiratory Failure. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2021, 18, 602-611.	1.6	7
186	How to avoid an epidemic of endotracheal tube occlusion. Lancet Respiratory Medicine,the, 2021, 9, 1215-1216.	10.7	7
187	Noninvasive respiratory support in intensive care medicine. Intensive Care Medicine, 2022, 48, 1211-1214.	8.2	7
188	A Gas-Powered, Patient-Responsive Automatic Resuscitator for Use in Acute Respiratory Failure: A Bench and Experimental Study. Respiratory Care, 2021, 66, 366-377.	1.6	6
189	Ten physiologic advances that improved treatment for ARDS. Intensive Care Medicine, 2016, 42, 814-816.	8.2	5
190	Ten reasons to be more attentive to patients when setting the ventilator. Intensive Care Medicine, 2016, 42, 572-575.	8.2	5
191	Gastric insufflation during cardiopulmonary resuscitation: A study in human cadavers. Resuscitation, 2020, 146, 111-117.	3.0	5
192	The importance of timing for the spontaneous breathing trial. Annals of Translational Medicine, 2019, 7, S210-S210.	1.7	5
193	High flow nasal cannula improves breathing efficiency and ventilatory ratio in COPD patients recovering from an exacerbation. Journal of Critical Care, 2022, 69, 154023.	2.2	5
194	Comorbidities and Readmissions in Survivors of Acute Hypercapnic Respiratory Failure. Seminars in Respiratory and Critical Care Medicine, 2020, 41, 806-816.	2.1	4
195	High-Flow Oxygen Therapy in Tracheostomized Subjects With Prolonged Mechanical Ventilation: A Randomized Crossover Physiologic Study. Respiratory Care, 2021, 66, 806-813.	1.6	4
196	Repeated endo-tracheal tube disconnection generates pulmonary edema in a model of volume overload: an experimental study. Critical Care, 2022, 26, 47.	5.8	4
197	Pressure support ventilation + sigh in acute hypoxemic respiratory failure patients: study protocol for a pilot randomized controlled trial, the PROTECTION trial. Trials, 2018, 19, 460.	1.6	3
198	Prefrontal cortex activation during incremental inspiratory loading in healthy participants. Respiratory Physiology and Neurobiology, 2022, 296, 103827.	1.6	3

#	Article	IF	CITATIONS
199	The exogenous surfactant pre-treatment attenuates ventilator-induced lung injury in adult rats. Respiratory Physiology and Neurobiology, 2022, 302, 103911.	1.6	3
200	Reply to Wiedermann. Intensive Care Medicine, 2009, 35, 382-383.	8.2	2
201	Does my patient really have ARDS?. Presse Medicale, 2011, 40, e541-e542.	1.9	2
202	Optimum positive end-expiratory pressure 40 years later. Indian Journal of Critical Care Medicine, 2014, 18, 494-496.	0.9	2
203	Monitoring Respiratory Drive and Effort during Mechanical Ventilation. Journal of Translational Critical Care Medicine, 2021, 3, 13.	0.2	2
204	Asymmetrical Lung Injury: Management and Outcome. Seminars in Respiratory and Critical Care Medicine, 2022, 43, 369-378.	2.1	2
205	Publishing the review process: an initiative for readers, authors and (future) reviewers. Intensive Care Medicine, 2006, 32, 1-2.	8.2	1
206	Lung-protective mechanical ventilation strategy for acute lung injury and acute respiratory distress syndrome. Journal of Organ Dysfunction, 2006, 2, 209-220.	0.3	1
207	High-flow nasal cannula in postextubation management. Journal of Thoracic Disease, 2016, 8, E1013-E1016.	1.4	1
208	Free Access to Costly Medical Resources: Provision of Extracorporeal Membrane Oxygenation for Profound Respiratory Failure in the French Health Care System. Annals of the American Thoracic Society, 2017, 14, 842-843.	3.2	1
209	Declaration of conflicts of interest: a â€~crooked' line towards scientific integrity. Intensive Care Medicine, 2018, 44, 1732-1734.	8.2	1
210	The Control of Breathing During Mechanical Ventilation. Clinics in Chest Medicine, 2019, 40, 259-267.	2.1	1
211	Mechanical Power. Anesthesiology, 2019, 130, 9-11.	2.5	1
212	Do ventilatory parameters influence outcome in patients with severe acute respiratory infection? Secondary analysis of an international, multicentre14-day inception cohort study. Journal of Critical Care, 2021, 66, 78-85.	2.2	1
213	Relation between PaO2/FIO2 ratio and FIO2: aÂmathematical description. Reply to Dr. Cole. Intensive Care Medicine, 2007, 33, 379-379.	8.2	0
214	Reply to Mion. Intensive Care Medicine, 2009, 35, 1148-1148.	8.2	0
215	Response. Chest, 2015, 147, e64.	0.8	0
216	Spontaneous Breathing Trials and Successful Extubation. JAMA - Journal of the American Medical Association, 2019, 322, 1716.	7.4	0

#	Article	IF	CITATIONS
217	Editorial. Current Opinion in Critical Care, 2019, 25, 1-2.	3.2	0
218	Dissociation between the brain target and respiratory capacity in critically ill patients. Intensive Care Medicine, 2020, 46, 1077-1078.	8.2	0
219	Phrenic Nerve Block and Respiratory Effort in Pigs and Critically Ill Patients with Acute Lung Injury. Anesthesiology, 2022, 136, 763-778.	2.5	0