
## **Charles L Liotta**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5961125/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reversible nonpolar-to-polar solvent. Nature, 2005, 436, 1102-1102.                                                                                                                                                                                                         | 27.8 | 836       |
| 2  | Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures. Industrial &<br>Engineering Chemistry Research, 2008, 47, 539-545.                                                                                                                         | 3.7  | 238       |
| 3  | Solvents for sustainable chemical processes. Green Chemistry, 2014, 16, 1034-1055.                                                                                                                                                                                          | 9.0  | 192       |
| 4  | Neoteric solvents for asymmetric hydrogenation: supercritical fluids, ionic liquids, and expanded<br>ionic liquidsThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal,<br>Germany, 13–16th October 2002 Green Chemistry, 2003, 5, 123-128. | 9.0  | 131       |
| 5  | Cosolvent interactions in supercritical fluid solutions. AICHE Journal, 1993, 39, 235-248.                                                                                                                                                                                  | 3.6  | 125       |
| 6  | Cross-Linking and Modification of Poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate) by<br>Dielsâ^'Alder Reactions with Maleimides. Macromolecules, 1999, 32, 5786-5792.                                                                                           | 4.8  | 121       |
| 7  | Ionic liquids as catalytic green solvents for nucleophilic displacement reactions. Chemical Communications, 2001, , 887-888.                                                                                                                                                | 4.1  | 110       |
| 8  | In Situ Formation of Alkylcarbonic Acids with CO2. Journal of Physical Chemistry A, 2001, 105, 3947-3948.                                                                                                                                                                   | 2.5  | 104       |
| 9  | Switchable solvents. Chemical Science, 2011, 2, 609.                                                                                                                                                                                                                        | 7.4  | 100       |
| 10 | One-component, switchable ionic liquids derived from siloxylated amines. Chemical Communications, 2009, , 116-118.                                                                                                                                                          | 4.1  | 93        |
| 11 | The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed condensations for organic synthesis. Green Chemistry, 2003, 5, 663-669.                                                                                      | 9.0  | 92        |
| 12 | CO2-Protected Amine Formation from Nitrile and Imine Hydrogenation in Gas-Expanded Liquids.<br>Industrial & Engineering Chemistry Research, 2004, 43, 7907-7911.                                                                                                            | 3.7  | 84        |
| 13 | Single component, reversible ionic liquids for energy applications. Fuel, 2010, 89, 1315-1319.                                                                                                                                                                              | 6.4  | 84        |
| 14 | Nucleoside phosphorylation by the mineral schreibersite. Scientific Reports, 2015, 5, 17198.                                                                                                                                                                                | 3.3  | 82        |
| 15 | Reversible in situ acid formation for β-pinene hydrolysis using CO2expanded liquid and hot water.<br>Green Chemistry, 2004, 6, 382-386.                                                                                                                                     | 9.0  | 78        |
| 16 | Near-Critical Water:Â A Benign Medium for Catalytic Reactions. Industrial & Engineering Chemistry<br>Research, 2001, 40, 6063-6067.                                                                                                                                         | 3.7  | 77        |
| 17 | Benign coupling of reactions and separations with reversible ionic liquids. Tetrahedron, 2010, 66, 1082-1090.                                                                                                                                                               | 1.9  | 70        |
| 18 | COSMO-RS Studies: Structure–Property Relationships for CO <sub>2</sub> Capture by Reversible Ionic<br>Liquids. Industrial & Engineering Chemistry Research, 2012, 51, 16066-16073.                                                                                          | 3.7  | 65        |

CHARLES L LIOTTA

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Kinetics of a Phase-Transfer Catalysis Reaction in Supercritical Fluid Carbon Dioxide. Industrial &<br>Engineering Chemistry Research, 1996, 35, 1801-1806.                                                                    | 3.7  | 63        |
| 20 | Tunable solvents for fine chemicals from the biorefinery. Green Chemistry, 2007, 9, 545.                                                                                                                                       | 9.0  | 58        |
| 21 | Polarity and hydrogen-bonding of ambient to near-critical water: Kamlet–Taft solvent parameters.<br>Chemical Communications, 2001, , 665-666.                                                                                  | 4.1  | 57        |
| 22 | Phase Equilibria for Binary Aqueous Systems from a Near-Critical Water Reaction Apparatus.<br>Industrial & Engineering Chemistry Research, 1998, 37, 3515-3518.                                                                | 3.7  | 56        |
| 23 | Spectroscopic measurement of solid solubility in supercritical fluids. AICHE Journal, 2001, 47, 2566-2572.                                                                                                                     | 3.6  | 51        |
| 24 | CO2-Induced Miscibility of Fluorous and Organic Solvents for Recycling Homogeneous Catalysts.<br>Industrial & Engineering Chemistry Research, 2004, 43, 4827-4832.                                                             | 3.7  | 51        |
| 25 | Tuning alkylation reactions with temperature in near-critical water. AICHE Journal, 1998, 44, 2080-2087.                                                                                                                       | 3.6  | 49        |
| 26 | Reversible Ionic Liquid Stabilized Carbamic Acids: A Pathway Toward Enhanced CO <sub>2</sub><br>Capture. Industrial & Engineering Chemistry Research, 2013, 52, 13159-13163.                                                   | 3.7  | 47        |
| 27 | Palladium-Catalyzed Suzuki Reactions in Water with No Added Ligand: Effects of Reaction Scale,<br>Temperature, pH of Aqueous Phase, and Substrate Structure. Organic Process Research and<br>Development, 2016, 20, 1489-1499. | 2.7  | 41        |
| 28 | Piperylene Sulfone:Â A Recyclable Dimethyl Sulfoxide Substitute for Copper-Catalyzed Aerobic Alcohol<br>Oxidation. Industrial & Engineering Chemistry Research, 2008, 47, 627-631.                                             | 3.7  | 39        |
| 29 | Production of Tartrates by Cyanide-Mediated Dimerization of Glyoxylate: A Potential Abiotic Pathway to the Citric Acid Cycle. Journal of the American Chemical Society, 2013, 135, 13440-13445.                                | 13.7 | 39        |
| 30 | Cosolvent tuning of tautomeric equilibrium in supercritical fluids. AICHE Journal, 1997, 43, 515-524.                                                                                                                          | 3.6  | 38        |
| 31 | Hydroformylation Catalyst Recycle with Gas-Expanded Liquids. Industrial & Engineering Chemistry<br>Research, 2008, 47, 2585-2589.                                                                                              | 3.7  | 36        |
| 32 | Self-neutralizing in situ Acid Catalysts from CO2. Topics in Catalysis, 2006, 37, 75-80.                                                                                                                                       | 2.8  | 35        |
| 33 | The Synthesis and the Chemical and Physical Properties of Nonâ€Aqueous Silylamine Solvents for<br>Carbon Dioxide Capture. ChemSusChem, 2012, 5, 2181-2187.                                                                     | 6.8  | 32        |
| 34 | Photochemical Cross-Linking of Poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate).<br>Macromolecules, 2000, 33, 1640-1645.                                                                                            | 4.8  | 31        |
| 35 | Self-Neutralizing in Situ Acid Catalysis for Single-Pot Synthesis of Iodobenzene and Methyl Yellow in<br>CO <sub>2</sub> -Expanded Methanol. Industrial & Engineering Chemistry Research, 2007, 46,<br>5252-5257.              | 3.7  | 31        |
| 36 | Design, Synthesis, and Evaluation of Nonaqueous Silylamines for Efficient CO <sub>2</sub> Capture.<br>ChemSusChem, 2014, 7, 299-307.                                                                                           | 6.8  | 30        |

CHARLES L LIOTTA

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Enhanced thermal stabilization and reduced color formation of plasticized Poly(vinyl chloride) using<br>zinc and calcium salts of 11-maleimideoundecanoic acid. Polymer Degradation and Stability, 2015, 111,<br>64-70.         | 5.8 | 29        |
| 38 | Acylation of activated aromatics without added acid catalyst. Chemical Communications, 2000, ,<br>1295-1296.                                                                                                                    | 4.1 | 28        |
| 39 | Solvent Effects on the Kinetics of a Dielsâ~'Alder Reaction in Gas-Expanded Liquids. Industrial &<br>Engineering Chemistry Research, 2008, 47, 632-637.                                                                         | 3.7 | 28        |
| 40 | Coupling chiral homogeneous biocatalytic reactions with benign heterogeneous separation. Green Chemistry, 2007, 9, 888.                                                                                                         | 9.0 | 26        |
| 41 | Indoles via Knoevenagel–Hemetsberger reaction sequence. RSC Advances, 2013, 3, 13232.                                                                                                                                           | 3.6 | 22        |
| 42 | Rapid resolution of carbohydrate isomers <i>via</i> multi-site derivatization ion mobility-mass spectrometry. Analyst, The, 2018, 143, 949-955.                                                                                 | 3.5 | 22        |
| 43 | Mechanisms and Applications of Solid—Liquid Phase-Transfer Catalysis. ACS Symposium Series, 1997, ,<br>29-40.                                                                                                                   | 0.5 | 18        |
| 44 | Pyrene and anthracene dicarboxylic acids as fluorescent brightening comonomers for polyester.<br>Journal of Polymer Science Part A, 2000, 38, 1291-1301.                                                                        | 2.3 | 18        |
| 45 | Epoxidized linolenic acid salts as multifunctional additives for the thermal stability of plasticized<br>PVC. Journal of Applied Polymer Science, 2015, 132, .                                                                  | 2.6 | 18        |
| 46 | The Effects of Solvent and Added Bases on the Protection of Benzylamines with Carbon Dioxide.<br>Processes, 2015, 3, 497-513.                                                                                                   | 2.8 | 17        |
| 47 | Supercritical Fluid Separation for Selective Quaternary Ammonium Salt Promoted Esterification of Terephthalic Acid. Industrial & amp; Engineering Chemistry Research, 1999, 38, 3622-3627.                                      | 3.7 | 16        |
| 48 | Switchable Solvents for in-Situ Acid-Catalyzed Hydrolysis of β-Pinene. Industrial & Engineering<br>Chemistry Research, 2009, 48, 2542-2547.                                                                                     | 3.7 | 16        |
| 49 | A Tandem, Bicatalytic Continuous Flow Cyclopropanation-Homo-Nazarov-Type Cyclization. Industrial<br>& Engineering Chemistry Research, 2015, 54, 9550-9558.                                                                      | 3.7 | 15        |
| 50 | Anchimericâ€Assisted Spontaneous Hydrolysis of Cyanohydrins Under Ambient Conditions: Implications<br>for Cyanideâ€Initiated Selective Transformations. Chemistry - A European Journal, 2017, 23, 8756-8765.                    | 3.3 | 15        |
| 51 | Surface modification of polybutadiene facilitated by supercritical carbon dioxide. Journal of Applied Polymer Science, 2003, 88, 522-530.                                                                                       | 2.6 | 14        |
| 52 | Aqueous Suzuki Coupling Reactions of Basic Nitrogen-Containing Substrates in the Absence of Added<br>Base and Ligand: Observation of High Yields under Acidic Conditions. Journal of Organic Chemistry,<br>2016, 81, 8520-8529. | 3.2 | 14        |
| 53 | Kinetics of a Diels—Alder Reaction in Supercritical Propane. ACS Symposium Series, 1995, , 166-178.                                                                                                                             | 0.5 | 11        |
| 54 | Pd-Catalyzed Suzuki coupling reactions of aryl halides containing basic nitrogen centers with<br>arylboronic acids in water in the absence of added base. New Journal of Chemistry, 2017, 41,<br>15420-15432.                   | 2.8 | 11        |

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Water at elevated temperatures (WET): reactant, catalyst, and solvent in the selective hydrolysis of protecting groups. Green Chemistry, 2014, 16, 2147-2155. | 9.0 | 10        |
| 56 |                                                                                                                                                               |     |           |
|    |                                                                                                                                                               |     |           |
|    |                                                                                                                                                               |     |           |
|    |                                                                                                                                                               |     |           |
|    |                                                                                                                                                               |     |           |
|    |                                                                                                                                                               |     |           |

CHARLES L LIOTTA

| #  | Article                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis and Thermal Characterization of Poly(alkylene 2,6-anthracenedicarboxylate)s.<br>Macromolecular Chemistry and Physics, 2001, 202, 1776-1781.                                                                                                                                                   | 2.2 | 4         |
| 74 | Ionic Liquids as Vehicles for Reactions and Separations. ACS Symposium Series, 2007, , 198-211.                                                                                                                                                                                                         | 0.5 | 4         |
| 75 | The Oligomerization of Glucose Under Plausible Prebiotic Conditions. Origins of Life and Evolution of Biospheres, 2019, 49, 225-240.                                                                                                                                                                    | 1.9 | 4         |
| 76 | Mechanistic Studies Related to the Thermal Chemistry of Simulated Nuclear Wastes That Mimic the Contents of a Hanford Site Double-Shell Tank. ACS Symposium Series, 1994, , 249-284.                                                                                                                    | 0.5 | 3         |
| 77 | Synthesis of 5-Substituted Tetrazoles: Reaction of Azide Salts with Organonitriles Catalyzed by Trialkylammonium Salts in Non-polar Media. Organic Process Research and Development, 0, , .                                                                                                             | 2.7 | 3         |
| 78 | Effect of temperature modulations on TEMPO-mediated regioselective oxidation of unprotected carbohydrates and nucleosides. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2759-2765.                                                                                                             | 2.2 | 2         |
| 79 | "110th Anniversary:―Interactions of Bis(1-methyl-1-phenylethyl) Peroxide with the Secondary<br>Antioxidant Bis(octadecyloxycarbonylethyl) Sulfide: Mechanistic Studies Conducted in Dodecane as a<br>Model System for Polyethylene. Industrial & Engineering Chemistry Research, 2019, 58, 14569-14578. | 3.7 | 2         |
| 80 | Sustainable Chemistry: Reversible reaction of CO2 with amines. French-Ukrainian Journal of Chemistry, 2016, 4, 14-22.                                                                                                                                                                                   | 0.4 | 2         |
| 81 | Reaction of Diphenyldiazomethane with Benzoic Acids in Batch and Continuous Flow. Journal of<br>Chemical Education, 2021, 98, 469-477.                                                                                                                                                                  | 2.3 | 2         |
| 82 | In Situ Alkylcarbonic Acid Catalysts Formed in CO2-Expanded Alcohols. ACS Symposium Series, 2009, ,<br>131-144.                                                                                                                                                                                         | 0.5 | 1         |
| 83 | Radical-mediated graft modification of polyethylene models with vinyltrimethoxysilane: a theoretical analysis. Structural Chemistry, 2015, 26, 97-107.                                                                                                                                                  | 2.0 | 1         |
| 84 | Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with<br><em>p</em> -Nitrobenzoic Acid. Journal of Visualized Experiments, 2017, , .                                                                                                                                                         | 0.3 | 1         |
| 85 | CO <sub>2</sub> Promoted Gel Formation of Hydrazine, Monomethylhydrazine, and Ethylenediamine:<br>Structures and Properties. Industrial & Engineering Chemistry Research, 2019, 58, 22652-22662.                                                                                                        | 3.7 | 1         |
| 86 | Organic acid shift reagents for the discrimination of carbohydrate isobars by ion mobility-mass spectrometry. Analyst, The, 2020, 145, 8008-8015.                                                                                                                                                       | 3.5 | 1         |
| 87 | Synthesis of Polycondensable Anthraquinone Dyes and ColouredNylon Fibres: I. Polymer<br>International, 1996, 41, 391-394.                                                                                                                                                                               | 3.1 | 0         |
| 88 | Synthesis of polycondensable anthraquinone dyes and coloured nylon fibres: II. Polymer<br>International, 1997, 44, 134-136.                                                                                                                                                                             | 3.1 | 0         |
| 89 | Synthesis of polycondensable anthraquinone dyes and coloured nylon fibres: III. Polymer<br>International, 1997, 44, 461-464.                                                                                                                                                                            | 3.1 | 0         |
| 90 | Viewing the Cybotactic Structure of Gas-Expanded Liquids. ACS Symposium Series, 2009, , 81-94.                                                                                                                                                                                                          | 0.5 | 0         |

0

| #  | Article                                                                               | IF | CITATIONS |
|----|---------------------------------------------------------------------------------------|----|-----------|
| 91 | Organic transformations mediated by macrocyclic multidentate ligands. , 0, , 157-174. |    | Ο         |
|    |                                                                                       |    |           |

92 Organic transformations mediated by macrocyclic multidentate ligands. , 0, , 59-76.