Philip L Llewellyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/59610/publications.pdf

Version: 2024-02-01

224 papers

20,999 citations

76 h-index 140 g-index

234 all docs

234 docs citations

times ranked

234

15242 citing authors

#	Article	IF	CITATIONS
1	High Uptakes of CO ₂ and CH ₄ in Mesoporous Metal—Organic Frameworks MIL-100 and MIL-101. Langmuir, 2008, 24, 7245-7250.	1.6	1,067
2	Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47. Journal of the American Chemical Society, 2005, 127, 13519-13521.	6.6	1,005
3	Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature, 2015, 527, 357-361.	13.7	817
4	Is the bet equation applicable to microporous adsorbents?. Studies in Surface Science and Catalysis, 2007, 160, 49-56.	1.5	759
5	Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100 and MIL-101. Angewandte Chemie - International Edition, 2006, 45, 8227-8231.	7.2	716
6	Why hybrid porous solids capture greenhouse gases?. Chemical Society Reviews, 2011, 40, 550-562.	18.7	603
7	Controlled Reducibility of a Metal–Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie - International Edition, 2010, 49, 5949-5952.	7.2	526
8	An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO ₂ Adsorption. Advanced Materials, 2007, 19, 2246-2251.	11.1	501
9	How Hydration Drastically Improves Adsorption Selectivity for CO2 over CH4 in the Flexible Chromium Terephthalate MIL-53. Angewandte Chemie - International Edition, 2006, 45, 7751-7754.	7.2	412
10	Co-adsorption and Separation of CO $<$ sub $>$ 2 $<$ /sub $>$ â $^{\circ}$ CH $<$ sub $>$ 4 $<$ /sub $>$ Mixtures in the Highly Flexible MIL-53(Cr) MOF. Journal of the American Chemical Society, 2009, 131, 17490-17499.	6.6	398
11	MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and 143-Oxo-Centered Trinuclear Units. Journal of the American Chemical Society, 2006, 128, 10223-10230.	6.6	386
12	Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chemical Communications, 2011, 47, 9603.	2.2	345
13	A Water Stable Metal–Organic Framework with Optimal Features for CO ₂ Capture. Angewandte Chemie - International Edition, 2013, 52, 10316-10320.	7.2	303
14	Energyâ€Efficient Dehumidification over Hierachically Porous Metal–Organic Frameworks as Advanced Water Adsorbents. Advanced Materials, 2012, 24, 806-810.	11.1	298
15	Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous and Mesoporous Materials, 2011, 143, 174-179.	2.2	289
16	Complex Adsorption of Short Linear Alkanes in the Flexible Metal-Organic-Framework MIL-53(Fe). Journal of the American Chemical Society, 2009, 131, 13002-13008.	6.6	281
17	Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties. Microporous and Mesoporous Materials, 2008, 116, 358-364.	2.2	272
18	Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Transactions, 2011, 40, 4879.	1.6	257

#	Article	IF	CITATIONS
19	Prediction of the Conditions for Breathing of Metal Organic Framework Materials Using a Combination of X-ray Powder Diffraction, Microcalorimetry, and Molecular Simulation. Journal of the American Chemical Society, 2008, 130, 12808-12814.	6.6	246
20	Hydrocarbon Adsorption in the Flexible Metal Organic Frameworks MIL-53(Al, Cr). Journal of the American Chemical Society, 2008, 130, 16926-16932.	6.6	244
21	Synthesis of MIL-102, a Chromium Carboxylate Metalâ^'Organic Framework, with Gas Sorption Analysis. Journal of the American Chemical Society, 2006, 128, 14889-14896.	6.6	229
22	Study of Carbon Dioxide Adsorption on Mesoporous Aminopropylsilane-Functionalized Silica and Titania Combining Microcalorimetry and in Situ Infrared Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 21726-21734.	1.5	220
23	Multistep N ₂ Breathing in the Metalâ^'Organic Framework Co(1,4-benzenedipyrazolate). Journal of the American Chemical Society, 2010, 132, 13782-13788.	6.6	220
24	Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide. Microporous and Mesoporous Materials, 2007, 99, 79-85.	2.2	216
25	Using Pressure to Provoke the Structural Transition of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2010, 49, 7526-7529.	7.2	200
26	How Water Fosters a Remarkable 5-Fold Increase in Low-Pressure CO ₂ Uptake within Mesoporous MIL-100(Fe). Journal of the American Chemical Society, 2012, 134, 10174-10181.	6.6	198
27	Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 2011, 13, 11748.	1.3	192
28	An Evaluation of UiOâ€66 for Gasâ€Based Applications. Chemistry - an Asian Journal, 2011, 6, 3270-3280.	1.7	192
29	Adsorption Mechanism of Carbon Dioxide in Faujasites: Grand Canonical Monte Carlo Simulations and Microcalorimetry Measurements. Journal of Physical Chemistry B, 2005, 109, 16084-16091.	1.2	185
30	Explanation of the Adsorption of Polar Vapors in the Highly Flexible Metal Organic Framework MIL-53(Cr). Journal of the American Chemical Society, 2010, 132, 9488-9498.	6.6	185
31	CH4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks. Chemical Communications, 2012, 48, 9831.	2.2	180
32	Water Sorption on Mesoporous Aluminosilicate MCM-41. Langmuir, 1995, 11, 574-577.	1.6	179
33	Structural Transformations and Adsorption of Fuel-Related Gases of a Structurally Responsive Nickel Phosphonate Metalâ^'Organic Framework, Ni-STA-12. Journal of the American Chemical Society, 2008, 130, 15967-15981.	6.6	175
34	Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. Journal of Materials Chemistry A, 2015, 3, 3294-3309.	5.2	174
35	Understanding the Thermodynamic and Kinetic Behavior of the CO ₂ /CH ₄ Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach. Journal of Physical Chemistry C, 2011, 115, 13768-13774.	1.5	166
36	Quasiâ€Elastic Neutron Scattering and Molecular Dynamics Study of Methane Diffusion in Metal Organic Frameworks MILâ€47(V) and MILâ€53(Cr). Angewandte Chemie - International Edition, 2008, 47, 6611-6615.	7.2	154

3

#	Article	IF	CITATIONS
37	Effect of pore size on adsorbate condensation and hysteresis within a potential model adsorbent: M41S. Microporous Materials, 1994, 3, 345-349.	1.6	146
38	Understanding CO ₂ Adsorption in CuBTC MOF: Comparing Combined DFT–ab Initio Calculations with Microcalorimetry Experiments. Journal of Physical Chemistry C, 2011, 115, 17925-17933.	1.5	146
39	On the breathing effect of a metal–organic framework upon CO2 adsorption: Monte Carlo compared to microcalorimetry experiments. Chemical Communications, 2007, , 3261.	2.2	137
40	Probing the Adsorption Sites for CO ₂ in Metal Organic Frameworks Materials MIL-53 (Al,) Tj ETQqC	0 0 0 ggBT	/Overlock 10 137
41	A robust amino-functionalized titanium(iv) based MOF for improved separation of acid gases. Chemical Communications, 2013, 49, 10082.	2.2	135
42	An Adsorbent Performance Indicator as a First Step Evaluation of Novel Sorbents for Gas Separations: Application to Metal–Organic Frameworks. Langmuir, 2013, 29, 3301-3309.	1.6	131
43	Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization. Microporous and Mesoporous Materials, 2010, 135, 187-196.	2.2	129
44	Tuning the breathing behaviour of MIL-53 by cation mixing. Chemical Communications, 2012, 48, 10237.	2.2	129
45	Molecular Insight into the Adsorption and Diffusion of Water in the Versatile Hydrophilic/Hydrophobic Flexible MIL-53(Cr) MOF. Journal of Physical Chemistry C, 2011, 115, 10764-10776.	1.5	128
46	Effect of the organic functionalization of flexible MOFs on the adsorption of CO2. Journal of Materials Chemistry, 2012, 22, 10266.	6.7	125
47	Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials. Comptes Rendus Chimie, 2005, 8, 283-302.	0.2	124
48	Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments. Adsorption, 2007, 13, 461-467.	1.4	123
49	Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction. 1. Argon, krypton, and methane. Langmuir, 1993, 9, 1846-1851.	1.6	122
50	Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction. 2. Nitrogen and carbon monoxide. Langmuir, 1993, 9, 1852-1856.	1.6	120
51	Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or Cr3+(OH)(O2C–C6H4–CO2). Chemical Communications, 2007, , 3291.	2.2	117
52	A Robust Infinite Zirconium Phenolate Building Unit to Enhance the Chemical Stability of Zr MOFs. Angewandte Chemie - International Edition, 2015, 54, 13297-13301.	7.2	116
53	Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO2adsorption in the MIL-53 (Al) system. Physical Chemistry Chemical Physics, 2007, 9, 1059-1063.	1.3	112
54	Transport Diffusivity of CO ₂ in the Highly Flexible Metal–Organic Framework MILâ€53(Cr). Angewandte Chemie - International Edition, 2009, 48, 8335-8339.	7.2	109

#	Article	IF	CITATIONS
55	Self and Transport Diffusivity of CO ₂ in the Metalâ^'Organic Framework MIL-47(V) Explored by Quasi-elastic Neutron Scattering Experiments and Molecular Dynamics Simulations. ACS Nano, 2010, 4, 143-152.	7.3	109
56	A Method for Screening the Potential of MOFs as CO ₂ Adsorbents in Pressure Swing Adsorption Processes. ChemSusChem, 2012, 5, 762-776.	3.6	109
57	Mechanical energy storage performance of an aluminum fumarate metal–organic framework. Chemical Science, 2016, 7, 446-450.	3.7	103
58	Occurrence of Uncommon Infinite Chains Consisting of Edge-Sharing Octahedra in a Porous Metal Organic Framework-Type Aluminum Pyromellitate Al ₄ (OH) ₈ [C ₁₀ O ₈ H ₂] (MIL-120): Synthesis, Structure, and Gas Sorption Properties. Chemistry of Materials, 2009, 21, 5783-5791.	3.2	102
59	Experimental Evidence Supported by Simulations of a Very High <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Diffusion in Metal Organic Framework Materials, Physical Review Letters, 2008, 100, 245901.	2.9	99
60	Metal-organic framework crystal-glass composites. Nature Communications, 2019, 10, 2580.	5.8	97
61	Adsorption of CO ₂ on amine-functionalised MCM-41: experimental and theoretical studies. Physical Chemistry Chemical Physics, 2015, 17, 11095-11102.	1.3	93
62	Calcination of the MCMâ€41 mesophase: mechanism of surfactant thermal degradation and evolution of the porosity. Journal of Materials Chemistry, 1999, 9, 2843-2849.	6.7	91
63	Single Crystal X-ray Diffraction Studies of Carbon Dioxide and Fuel-Related Gases Adsorbed on the Small Pore Scandium Terephthalate Metal Organic Framework, Sc ₂ (O ₂ CC ₆ H ₄ CO ₂) ₃ . Langmuir, 2009, 25, 3618-3626.	1.6	91
64	Adsorption and Diffusion of H ₂ in the MOF Type Systems MIL-47(V) and MIL-53(Cr): A Combination of Microcalorimetry and QENS Experiments with Molecular Simulations. Journal of Physical Chemistry C, 2009, 113, 7802-7812.	1.5	89
65	Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO ₂ Capture from Flue Gas in Metal–Organic Frameworks. ChemSusChem, 2017, 10, 1543-1553.	3.6	89
66	Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nature Communications, 2020, 11 , 1216 .	5.8	88
67	Role of Structural Defects in the Adsorption and Separation of C3 Hydrocarbons in Zr-Fumarate-MOF (MOF-801). Chemistry of Materials, 2019, 31, 8413-8423.	3.2	87
68	Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: A combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements. Microporous and Mesoporous Materials, 2009, 119, 117-128.	2.2	86
69	Adsorption and Diffusion of Light Hydrocarbons in UiO-66(Zr): A Combination of Experimental and Modeling Tools. Journal of Physical Chemistry C, 2014, 118, 27470-27482.	1.5	84
70	Influence of Extra-Framework Cations on the Adsorption Properties of X-Faujasite Systems:Â Microcalorimetry and Molecular Simulations. Journal of Physical Chemistry B, 2005, 109, 125-129.	1.2	83
71	Ozone treatment for the removal of surfactant to form MCM-41 type materials. Chemical Communications, 1998, , 2203-2204.	2.2	82
72	Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal–organic frameworks: a combination of molecular simulations and microcalorimetry/gravimetry measurements. Physical Chemistry Chemical Physics, 2010, 12, 6428.	1.3	82

#	Article	IF	CITATIONS
73	MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO ₂ selectivity and fast CO ₂ transport. Journal of Materials Chemistry A, 2016, 4, 1383-1389.	5.2	82
74	Separation of CO2–CH4 mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches. Dalton Transactions, 2012, 41, 4052.	1.6	78
75	Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO ₂ Capture. Chemistry of Materials, 2017, 29, 10326-10338.	3.2	78
76	A promising metal–organic framework (MOF), MIL-96(Al), for CO ₂ separation under humid conditions. Journal of Materials Chemistry A, 2018, 6, 2081-2090.	5.2	78
77	Conformation-Controlled Sorption Properties and Breathing of the Aliphatic Al-MOF [Al(OH)(CDC)]. Inorganic Chemistry, 2014, 53, 4610-4620.	1.9	74
78	Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide?. Solid State Ionics, 2003, 157, 163-169.	1.3	73
79	Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nature Communications, 2019, 10, 3632.	5.8	73
80	MCM-41 and related materials as media for controlled polymerization processes. Studies in Surface Science and Catalysis, 1994, 84, 2013-2020.	1.5	68
81	Sol–gel synthesis and characterization of Ce doped-BaTiO3. Journal of the European Ceramic Society, 2006, 26, 3241-3246.	2.8	66
82	A Water Stable Metal–Organic Framework with Optimal Features for CO ₂ Capture. Angewandte Chemie, 2013, 125, 10506-10510.	1.6	66
83	Mesoporous Silica Modified with Titania:Â Structure and Thermal Stability. Chemistry of Materials, 2006, 18, 3184-3191.	3.2	65
84	Structural Origin of Unusual CO ₂ Adsorption Behavior of a Small-Pore Aluminum Bisphosphonate MOF. Journal of Physical Chemistry C, 2015, 119, 4208-4216.	1.5	63
85	Direct accessibility of mixed-metal (<scp>iii</scp> / <scp>ii</scp>) acid sites through the rational synthesis of porous metal carboxylates. Chemical Communications, 2015, 51, 10194-10197.	2.2	63
86	CO2 adsorption in alkali cation exchanged Y faujasites: A quantum chemical study compared to experiments. Chemical Physics Letters, 2006, 426, 387-392.	1.2	62
87	Influence of [Mo ₆ Br ₈ F ₆] ^{2â^'} Cluster Unit Inclusion within the Mesoporous Solid MIL-101 on Hydrogen Storage Performance. Langmuir, 2010, 26, 11283-11290.	1.6	59
88	Molecular Dynamics Simulation of the Cation Motion upon Adsorption of CO2in Faujasite Zeolite Systems. Journal of Physical Chemistry B, 2006, 110, 14372-14378.	1.2	58
89	Investigation of CO2 adsorption in Faujasite systems: Grand Canonical Monte Carlo and molecular dynamics simulations based on a new derived Na+–CO2 force field. Microporous and Mesoporous Materials, 2007, 99, 70-78.	2.2	58
90	Using water adsorption measurements to access the chemistry of defects in the metal–organic framework UiO-66. CrystEngComm, 2017, 19, 4137-4141.	1.3	58

#	Article	IF	CITATIONS
91	Preparation, characterisation and crystal structure of two zinc(II) benzoate complexes with pyridine-based ligands nicotinamide and methyl-3-pyridylcarbamate. Inorganica Chimica Acta, 2004, 357, 2049-2059.	1.2	56
92	Argon and Nitrogen Adsorption in Disordered Nanoporous Carbons:Â Simulation and Experiment. Langmuir, 2005, 21, 4431-4440.	1.6	56
93	Combined Theoretical and Experimental Investigation of CO Adsorption on Coordinatively Unsaturated Sites in CuBTC MOF. ChemPhysChem, 2012, 13, 488-495.	1.0	53
94	Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks. Journal of Physical Chemistry C, 2018, 122, 19171-19179.	1.5	52
95	Influence of the Organic Ligand Functionalization on the Breathing of the Porous Iron Terephthalate Metal Organic Framework Type Material upon Hydrocarbon Adsorption. Journal of Physical Chemistry C, 2011, 115, 18683-18695.	1.5	50
96	Thermal Stability and Thermodynamic Properties of Hybrid Proton-Conducting Polyaryl Etherketones. Journal of Physical Chemistry B, 2006, 110, 15817-15823.	1.2	49
97	A comparison between melting-solidification and capillary condensation hysteresis in mesoporous materials: application to the interpretation of thermoporometry data. Thermochimica Acta, 2004, 421, 11-18.	1,2	48
98	Impregnation of vitamin E acetate on silica mesoporous phases using supercritical carbon dioxide. Journal of Supercritical Fluids, 2009, 51, 278-286.	1.6	48
99	Experimental Screening of Porous Materials for High Pressure Gas Adsorption and Evaluation in Gas Separations: Application to MOFs (MIL-100 and CAU-10). ACS Combinatorial Science, 2013, 15, 111-119.	3.8	48
100	Adsorption of Propane and Propylene on CuBTC Metal–Organic Framework: Combined Theoretical and Experimental Investigation. Journal of Physical Chemistry C, 2013, 117, 11159-11167.	1.5	48
101	Some aspects of thermal decomposition of NiC2O4·2H2O. Thermochimica Acta, 2007, 466, 57-62.	1.2	47
102	The Direct Heat Measurement of Mechanical Energy Storage Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 4626-4630.	7.2	47
103	Study of Gypsum Dehydration by Controlled Transformation Rate Thermal Analysis (CRTA). Journal of Solid State Chemistry, 1998, 139, 37-44.	1.4	46
104	Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate. Microporous and Mesoporous Materials, 2001, 44-45, 195-201.	2.2	46
105	Tuning the Properties of MOFâ€808 via Defect Engineering and Metal Nanoparticle Encapsulation. Chemistry - A European Journal, 2021, 27, 6804-6814.	1.7	46
106	In situ surfactant removal from MCM-type mesostructures by ozone treatment. Journal of Materials Chemistry, 2001, 11, 589-593.	6.7	45
107	A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO. Microporous and Mesoporous Materials, 2011, 146, 36-47.	2.2	44
108	Direct synthesis of mesoporous silica presenting large and tunable pores using BAB triblock copolymers: Influence of each copolymer block on the porous structure. Microporous and Mesoporous Materials, 2008, 112, 612-620.	2.2	43

#	Article	IF	CITATIONS
109	On Defining a Simple Empirical Relationship to Predict the Pore Size of Mesoporous Silicas Prepared from PEO- <i>b</i> -PS Diblock Copolymers. Chemistry of Materials, 2009, 21, 48-55.	3.2	43
110	Adsorption of Carbon Dioxide on Mesoporous Zirconia: Microcalorimetric Measurements, Adsorption Isotherm Modeling, and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2011, 115, 10097-10103.	1.5	43
111	Evaluation of MIL-47(V) for CO ₂ -Related Applications. Journal of Physical Chemistry C, 2013, 117, 962-970.	1.5	42
112	Vaporâ€Phase Linker Exchange of the Metal–Organic Framework ZIFâ€8: A Solventâ€Free Approach to Postâ€synthetic Modification. Angewandte Chemie - International Edition, 2019, 58, 18471-18475.	7.2	42
113	Adsorption of carbon dioxide in SAPO STA-7 and AlPO-18: Grand Canonical Monte Carlo simulations andÂmicrocalorimetry measurements. Adsorption, 2008, 14, 207-213.	1.4	41
114	Observing the Effects of Shaping on Gas Adsorption in Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4416-4423.	1.0	40
115	Adsorption of Non Polar and Quadrupolar Gases in Siliceous Faujasite: Molecular Simulations and Experiments. Adsorption, 2005, $11,331-336$.	1.4	39
116	Controlled Rate Thermal Analysis of kaolinite dehydroxylation: effect of water vapour pressure on the mechanism. Thermochimica Acta, 2002, 390, 123-132.	1.2	38
117	CO2 adsorption in LiY and NaY at high temperature: molecularÂsimulations compared to experiments. Adsorption, 2007, 13, 453-460.	1.4	38
118	Highly Selective CO ₂ Capture by Small Pore Scandium-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 23592-23598.	1.5	38
119	Glass transition, freezing and melting of liquids confined in the mesoporous silicate MCM-41. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1847-1855.	0.6	36
120	Highly Efficient Proton Conduction in a Three-Dimensional Titanium Hydrogen Phosphate. Chemistry of Materials, 2017, 29, 7263-7271.	3.2	35
121	Thermodynamic and structural properties of physisorbed phases within the model mesoporous adsorbent M41S (pore diameter 2.5 nm). Surface Science, 1996, 352-354, 468-474.	0.8	34
122	Modeling of pore wall amorphous structures: influence of wall heterogeneity on the mechanism of adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 137-142.	2.3	34
123	Adsorption of argon and nitrogen in X-faujasites: relationships for understanding the interactions with monovalent and divalent cations. Microporous and Mesoporous Materials, 2005, 79, 53-59.	2.2	34
124	Using Pressure to Provoke the Structural Transition of Metal–Organic Frameworks. Angewandte Chemie, 2010, 122, 7688-7691.	1.6	34
125	pyGAPS: a Python-based framework for adsorption isotherm processing and material characterisation. Adsorption, 2019, 25, 1533-1542.	1.4	33
126	Influence of Solvent‣ike Sidechains on the Adsorption of Light Hydrocarbons in Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 18764-18769.	1.7	32

#	Article	IF	Citations
127	High pressure methane adsorption on microporous carbon monoliths prepared by olives stones. Materials Letters, 2013, 99, 184-187.	1.3	31
128	Microporous Lead–Organic Framework for Selective CO ₂ Adsorption and Heterogeneous Catalysis. Inorganic Chemistry, 2018, 57, 1774-1786.	1.9	31
129	The CO2 adsorption behavior study on activated carbon synthesized from olive waste. Journal of CO2 Utilization, 2020, 42, 101292.	3.3	31
130	Diversity of carboxylate coordination in two novel zinc(II) cinnamate complexes. Inorganic Chemistry Communication, 2007, 10, 27-32.	1.8	30
131	Engineering micromechanics of soft porous crystals for negative gas adsorption. Chemical Science, 2020, 11, 9468-9479.	3.7	30
132	Metalâ€Organic Frameworks as Catalyst Supports: Influence of Lattice Disorder on Metal Nanoparticle Formation. Chemistry - A European Journal, 2018, 24, 7498-7506.	1.7	29
133	Synthesis of ZIFâ€93/11 Hybrid Nanoparticles via Postâ€Synthetic Modification of ZIFâ€93 and Their Use for H ₂ /CO ₂ Separation. Chemistry - A European Journal, 2018, 24, 11211-11219.	1.7	27
134	A microcalorimetric comparison of the adsorption of various gases on two microporous adsorbents: a model aluminophosphate and a natural clay. Thermochimica Acta, 1992, 204, 79-88.	1.2	26
135	Zinc(II)-benzoato complexes immobilised in mesoporous silica host. Microporous and Mesoporous Materials, 2005, 83, 125-135.	2.2	25
136	Simulation of the adsorption properties of CH4 in faujasites up to high pressure: Comparison with microcalorimetry. Microporous and Mesoporous Materials, 2006, 89, 96-102.	2.2	25
137	Dehydroxylation mechanisms of polyphosphate glasses in relation to temperature and pressure. Journal of Non-Crystalline Solids, 1997, 222, 415-421.	1.5	24
138	High-Resolution N ₂ Adsorption Isotherms at 77.4 K: Critical Effect of the He Used During Calibration. Journal of Physical Chemistry C, 2013, 117, 16885-16889.	1.5	22
139	Preparation of reactive nickel oxide by the controlled thermolysis of hexahydrated nickel nitrate. Solid State Ionics, 1997, 101-103, 1293-1298.	1.3	21
140	Comparing the Basic Phenomena Involved in Three Methods of Pore-size Characterization: Gas Adsorption, Liquid Intrusion and Thermoporometry. Particle and Particle Systems Characterization, 2004, 21, 128-137.	1.2	21
141	Monte Carlo simulations of krypton adsorption in nanopores: Influence of pore-wall heterogeneity on the adsorption mechanism. Low Temperature Physics, 2003, 29, 880-882.	0.2	20
142	Acetylene and argon adsorption in a supramolecular organic zeolite. Physical Chemistry Chemical Physics, 2012, 14, 311-317.	1.3	20
143	Functionalization of Zr-based MOFs with alkyl and perfluoroalkyl groups: the effect on the water sorption behavior. Dalton Transactions, 2015, 44, 19687-19692.	1.6	20
144	Metal–Organic Frameworks from Divalent Metals and 1,4-Benzenedicarboxylate with Bidentate Pyridine- <i>N</i> -oxide Co-ligands. Crystal Growth and Design, 2015, 15, 891-899.	1.4	19

#	Article	IF	CITATIONS
145	Location of CO ₂ during its uptake by the flexible porous metal–organic framework MIL-53(Fe): a high resolution powder X-ray diffraction study. CrystEngComm, 2015, 17, 422-429.	1.3	19
146	On the physisorption isotherm of the MFI-type zeolites: The high-pressure hysteresis. Microporous Materials, 1993, 1, 247-256.	1.6	18
147	Emanation thermal analysis study of synthetic gibbsite. Journal of Thermal Analysis and Calorimetry, 2003, 71, 773-782.	2.0	18
148	Diffusion of CO2 in NaY and NaX Faujasite systems: Quasi-elastic neutron scattering experiments and molecular dynamics simulations. European Physical Journal: Special Topics, 2007, 141, 127-132.	1.2	18
149	Thermodynamics of the structural transition in metal–organic frameworks. Dalton Transactions, 2016, 45, 4274-4282.	1.6	18
150	Hydrogen adsorption on activated carbons prepared from olive waste: effect of activation conditions on uptakes and adsorption energies. Journal of Porous Materials, 2017, 24, 1-11.	1.3	18
151	Benchtop <i>In Situ</i> Measurement of Full Adsorption Isotherms by NMR. Journal of the American Chemical Society, 2021, 143, 8249-8254.	6.6	18
152	A microcalorimetric study of the different states of argon and nitrogen adsorbed AT 77 K on silicalite-I and ZSM-5. Journal of Thermal Analysis, 1992, 38, 683-692.	0.7	17
153	A Zn(II)-Coordination Polymer Formed by Benzoate and 3-Pyridinemethanol Ligands: Synthesis, Spectroscopic Properties, Crystal Structure and Kinetics of Thermal Decomposition. Journal of Coordination Chemistry, 2004, 57, 87-96.	0.8	17
154	Influence of the Silicon Content and Chemical Disorder of the SAPO STA-7 Framework on the CO ₂ Adsorption Mechanism:  Grand Canonical Monte Carlo Simulations Combined to Microcalorimetry Measurements. Journal of Physical Chemistry C, 2008, 112, 5048-5056.	1.5	17
155	Microcalorimetric Investigation of High-Surface-Area Mesoporous Titania Samples for CO ₂ Adsorption. Langmuir, 2008, 24, 7963-7969.	1.6	17
156	Study of methane and carbon dioxide adsorption capacity by synthetic nanoporous carbon based on pyrogallol-formaldehyde. International Journal of Hydrogen Energy, 2017, 42, 8905-8913.	3.8	17
157	Use of sample controlled thermal analysis to liberate the micropores of aluminophosphate AlPO4-11: evidence of template evaporation. Journal of Materials Chemistry, 2001, 11, 1300-1304.	6.7	16
158	Effect of the ligand functionalization on the acid–base properties of flexible MOFs. Microporous and Mesoporous Materials, 2014, 195, 197-204.	2,2	16
159	Data Mining for Binary Separation Materials in Published Adsorption Isotherms. Chemistry of Materials, 2020, 32, 982-991.	3.2	16
160	Green solvent extraction of a triblock copolymer from mesoporous silica: Application to the adsorption of carbon dioxide under static and dynamic conditions. Microporous and Mesoporous Materials, 2010, 128, 26-33.	2.2	15
161	Microcalorimetric Study of Argon, Nitrogen, and Carbon Monoxide Adsorption on Mesoporous Vycor Glass. Journal of Colloid and Interface Science, 1998, 206, 527-531.	5.0	14
162	Multiple Features of a Porous Structure as Assessed from the Hysteresis of Nitrogen Adsorptionâ^Desorption: Case Study of the Formation of UO3 from UO2(NO3)2Â-6H2O. Langmuir, 1998, 14, 4217-4221.	1.6	14

#	Article	IF	Citations
163	Gas Adsorption in Zeolites and Related Materials. Studies in Surface Science and Catalysis, 2007, 168, 555-XVI.	1.5	14
164	Structural and dynamic properties of confined hydrogen isotopes (H2, HD, D2) in model porous materials: Silicalite-I, AlPO4-N family (N=5, 8, 11, 54) and MCM-41 (â^=25Ã). Microporous and Mesoporous Materials, 2007, 101, 271-278.	2.2	14
165	Adsorption of CO and CO ₂ in Large Pore Sized Ag@SiO ₂ Nanocomposite. Journal of Physical Chemistry C, 2010, 114, 22652-22658.	1.5	14
166	Computational exploration of the gas adsorption on the iron tetracarboxylate metal-organic framework MIL-102. Molecular Simulation, 2015, 41, 1357-1370.	0.9	14
167	Vaporâ€Phase Linker Exchange of the Metal–Organic Framework ZIFâ€8: A Solventâ€Free Approach to Postâ€synthetic Modification. Angewandte Chemie, 2019, 131, 18642-18646.	1.6	14
168	Investigating the effect of alumina shaping on the sorption properties of promising metal–organic frameworks. RSC Advances, 2019, 9, 7128-7135.	1.7	14
169	Evaluation of the n-nonane preadsorption method with a well characterized model adsorbent: Silicalite-I. Pure and Applied Chemistry, 1993, 65, 2157-2167.	0.9	13
170	Preparation and Electrical Properties of Dense Ceramics with NASICON Composition Sintered at Reduced Temperatures. Journal of Electroceramics, 2004, 13, 817-823.	0.8	13
171	Adsorption by Metal-Organic Frameworks. , 2014, , 565-610.		13
172	Deintercalation process of fluorinated carbon fibres—II. Kinetic study and reaction mechanisms. Carbon, 1998, 36, 1199-1205.	5.4	12
173	Thermal Methods in the Synthesis of New Ordered Mesoporous Adsorbents. Magyar Apróvad Közlemények, 1999, 56, 261-266.	1.4	12
174	Adsorption of Small Molecules in the Porous Zirconium-Based Metal Organic Framework MIL-140A (Zr): A Joint Computational-Experimental Approach. Journal of Physical Chemistry C, 2016, 120, 7192-7200.	1.5	12
175	Effect of the both texture and electrical properties of activated carbon on the CO 2 adsorption capacity. Materials Research Bulletin, 2016, 73, 130-139.	2.7	12
176	Toward an operational methodology to identify industrial-scaled nanomaterial powders with the volume specific surface area criterion. Nanoscale Advances, 2019, 1, 3232-3242.	2.2	12
177	Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods. Environmental Science: Nano, 2019, 6, 152-162.	2.2	12
178	A Step in Carbon Capture from Wet Gases: Understanding the Effect of Water on CO ₂ Adsorption and Diffusion in UiO-66. Journal of Physical Chemistry C, 2022, 126, 3211-3220.	1.5	12
179	Low temperature constant rate thermodesorption as a tool to characterise porous solids. Thermochimica Acta, 2000, 360, 77-83.	1.2	11
180	CO2 diffusivity in LiY and NaY faujasite systems: aÂcombination of molecular dynamics simulations and quasi-elastic neutron scattering experiments. Adsorption, 2007, 13, 209-214.	1.4	11

#	Article	IF	CITATIONS
181	Low temperature mechanism of adsorption of methane: Comparison between homogenous and heterogeneous pores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 496, 86-93.	2.3	11
182	Characterization of polyphosphate glasses preparation using CRTA. Journal of Theoretical Biology, 1997, 49, 1171-1178.	0.8	10
183	Sorption of ammonia gas on the solid ion conductor Cu(i)Br. Physical Chemistry Chemical Physics, 2002, 4, 802-805.	1.3	10
184	Computational investigation of the adsorption of carbon dioxide onto zirconium oxide clusters. Journal of Molecular Modeling, 2012, 18, 4819-4830.	0.8	10
185	Quasi-equilibrium adsorption gravimetry of water on MFI- and  FER'-type zeolites and on an AFI-type aluminophosphate. Journal of Thermal Analysis, 1994, 42, 855-867.	0.7	9
186	Effect of T(III) zoning in MFI-type zeolites on the adsorption isotherm and differential enthalpies of adsorption at 77 K. Langmuir, 1994, 10, 570-575.	1.6	9
187	Assessing microporosity by immersion microcalorimetry into liquid nitrogen or liquid argon. Studies in Surface Science and Catalysis, 2002, , 171-176.	1.5	9
188	Do the Differential Enthalpies of Adsorption Vary Between 77 K and 302 K? An Experimental Case Study of Argon and Nitrogen on Two Faujasite Type Zeolites. Adsorption, 2005, 11, 73-78.	1.4	9
189	Modeling of adsorption of CO2 in the deformed pores of MIL-53(Al). Journal of Molecular Modeling, 2017, 23, 101.	0.8	9
190	Ageing of wet-synthesized oxide powders. Journal of Thermal Analysis and Calorimetry, 2007, 88, 789-793.	2.0	8
191	Silicon distribution in SAPO materials: A computational study of STA-7 Combined to 29Si MAS NMR spectroscopy. Microporous and Mesoporous Materials, 2008, 107, 268-275.	2.2	8
192	Na ⁺ Charge Tuning through Encapsulation of Sulfur Chromophores in Zeolite A and the Consequences in Adsorbent Properties. Journal of Physical Chemistry C, 2010, 114, 7880-7887.	1.5	8
193	Heterogeneous melting of methane confined in nano-pores. Journal of Chemical Physics, 2016, 145, 144704.	1.2	8
194	Low Temperature Calorimetry Coupled with Molecular Simulations for an In-Depth Characterization of the Guest-Dependent Compliant Behavior of MOFs. Chemistry of Materials, 2020, 32, 3489-3498.	3.2	8
195	Deintercalation Process of Fluorinated Carbon Fibres. Part I - Controlled Rate Evolved Gas Analysis. Molecular Crystals and Liquid Crystals, 1998, 310, 111-118.	0.3	7
196	Characterisation of microporous materials by adsorption microcalorimetry. Membrane Science and Technology, 2000, , 213-230.	0.5	7
197	Microporosity of carbon deposits collected in the Tore Supra tokamak probed by nitrogen and carbon dioxide adsorption. Carbon, 2009, 47, 109-116.	5.4	7
198	Adsorption by Ordered Mesoporous Materials. , 2014, , 529-564.		7

#	Article	IF	Citations
199	One-pot synthesis of organic polymer functionalized mesoporous silicas. Microporous and Mesoporous Materials, 2021, 319, 111036.	2.2	7
200	Controlled transformation rate thermal analysis: an inverse method allowing the characterisation of the thermal behaviour of polyphosphate glasses. High Temperatures - High Pressures, 1998, 30, 575-580.	0.3	7
201	Adsorption of Argon, Methane, Nitrogen, Carbon Monoxide and Water Vapour on Sepiolite and Alpo4-5 as Studied by Isothermal Microcalorimetry. Studies in Surface Science and Catalysis, 1993, , 235-242.	1.5	6
202	Constant transformation rate thermal analysis of HGdP2O7·3H2O. Journal of Thermal Analysis and Calorimetry, 2005, 82, 783-789.	2.0	6
203	Adsorption by Metal Oxides. , 2014, , 393-465.		6
204	Porous zinc and cobalt 2-nitroimidazolate frameworks with six-membered ring windows and a layered cobalt 2-nitroimidazolate polymorph. CrystEngComm, 2017, 19, 1377-1388.	1.3	6
205	Investigation of the dehydration of Y-TZP gels by Controlled transformation Rate Thermal Analysis. Solid State Ionics, 1997, 95, 23-28.	1.3	5
206	SCTA and Adsorbents. Journal of Thermal Analysis and Calorimetry, 2003, 72, 1099-1101.	2.0	5
207	A diffuse reflectance fourier transform infra-red study of carbon dioxide adsorption on silicalite-I. Journal of Chemical Technology and Biotechnology, 2007, 52, 473-480.	1.6	5
208	Adsorptionâ€Induced Structural Phase Transformation in Nanopores. Angewandte Chemie - International Edition, 2017, 56, 16243-16246.	7.2	5
209	Kinetic Study by Controlled-Transformation Rate Thermal Analysis of the Dehydroxylation of Kaolinite. Clay Minerals, 1998, 33, 269-276.	0.2	5
210	Growth Mode of Hydrogen in Mesoporous MCM-41. Adsorption and Neutron Scattering Coupled Studies. Adsorption, 2005, 11, 679-684.	1.4	4
211	Surface Area/Porosity, Adsorption, Diffusion. , 2012, , 853-879.		4
212	A microcalorimetric comparison of the effect ofn-alkane preadsorption on the adsorption of argon and nitrogen on Silicalite-I. Journal of Thermal Analysis, 1994, 41, 1343-1356.	0.7	3
213	Complementarity of microcalorimetry, manometry and gravimetry in the study of gas adsorption by microporous solids up to 50bar. Studies in Surface Science and Catalysis, 2002, , 723-729.	1.5	3
214	Calorimetry by immersion into liquid nitrogen and liquid argon: a better way to determine the internal surface area of micropores. Journal of Colloid and Interface Science, 2004, 277, 383-386.	5.0	3
215	Nitrogen Adsorption on Divalent Cation Substituted X-Faujasites: Microcalorimetry and Monte Carlo Simulation. Adsorption, 2005, 11, 343-347.	1.4	2
216	Investigating Unusual Organic Functional Groups to Engineer the Surface Chemistry of Mesoporous Silica to Tune CO ₂ â€"Surface Interactions. ACS Applied Materials & Diteractions amp; Interfaces, 2017, 9, 14490-14496.	4.0	2

#	Article	IF	CITATIONS
217	Adsorptionâ€Induced Structural Phase Transformation in Nanopores. Angewandte Chemie, 2017, 129, 16461-16464.	1.6	2
218	Characterising the porous structure of Egyptian mortars using thermoporometry, mercury intrusion porometry and gas adsorption manometry. Studies in Surface Science and Catalysis, 2002, 144, 435-441.	1.5	1
219	Anomalous adsorption behavior observed during the characterization of a polystyrene film prepared on a mesoporous material. Journal of Colloid and Interface Science, 2004, 275, 48-52.	5.0	1
220	Adsorption Methodology. , 0, , 575-605.		1
221	Storage of Hydrogen on Nanoporous Adsorbents. Green Energy and Technology, 2019, , 255-286.	0.4	1
222	Characterization of Fine Grain Ba0.995Y0.005TiO3 Ceramics Obtained from Gel–Precursor Nanopowder. Journal of Nanoscience and Nanotechnology, 2007, 7, 1014-1020.	0.9	0
223	Characterisation of MOF Materials by Thermomechanical Methods. , 2013, , .		O
224	Multifunctionality of weak ferromagnetic porphyrin-based MOFs: selective adsorption in the liquid and gas phase. CrystEngComm, 2021, 23, 4205-4213.	1.3	O