Alberto Salleo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5960285/publications.pdf Version: 2024-02-01

	13865	8167
23,301	67	148
citations	h-index	g-index
212	212	20925
docs citations	times ranked	citing authors
	citations 212	23,301 67 citations h-index 212 212

#	Article	IF	CITATIONS
1	A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nature Materials, 2013, 12, 1038-1044.	27.5	1,742
2	Materials and Applications for Large Area Electronics: Solution-Based Approaches. Chemical Reviews, 2010, 110, 3-24.	47.7	1,646
3	A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nature Materials, 2017, 16, 414-418.	27.5	1,234
4	Organic electrochemical transistors. Nature Reviews Materials, 2018, 3, .	48.7	1,143
5	High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nature Communications, 2016, 7, 11585.	12.8	1,053
6	Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature Materials, 2017, 16, 363-369.	27.5	921
7	Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. Journal of Materials Chemistry C, 2015, 3, 10715-10722.	5.5	689
8	Organic electronics for neuromorphic computing. Nature Electronics, 2018, 1, 386-397.	26.0	672
9	Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nature Materials, 2014, 13, 63-68.	27.5	667
10	Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy and Environmental Science, 2015, 8, 956-963.	30.8	630
11	Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nature Materials, 2020, 19, 491-502.	27.5	485
12	Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 2019, 364, 570-574.	12.6	484
13	Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thinâ€Film Organic Transistors. Advanced Materials, 2009, 21, 1091-1109.	21.0	412
14	Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances, 2018, 4, eaar2904.	10.3	395
15	The role of the third component in ternary organic solar cells. Nature Reviews Materials, 2019, 4, 229-242.	48.7	370
16	Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport. Macromolecules, 2011, 44, 5246-5255.	4.8	278
17	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Progress in Polymer Science, 2013, 38, 1978-1989.	24.7	274
18	Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Physical Review B, 2011, 84, .	3.2	262

#	Article	IF	CITATIONS
19	The chemical and structural origin of efficient p-type doping in P3HT. Organic Electronics, 2013, 14, 1330-1336.	2.6	256
20	Plasmon-Enhanced Upconversion. Journal of Physical Chemistry Letters, 2014, 5, 4020-4031.	4.6	248
21	2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2022, 2, 022501.	5.9	217
22	A biohybrid synapse with neurotransmitter-mediated plasticity. Nature Materials, 2020, 19, 969-973.	27.5	215
23	Avoid the kinks when measuring mobility. Science, 2016, 352, 1521-1522.	12.6	213
24	Recombination in Polymer:Fullerene Solar Cells with Openâ€Circuit Voltages Approaching and Exceeding 1.0 V. Advanced Energy Materials, 2013, 3, 220-230.	19.5	212
25	Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science, 2019, 363, 1199-1202.	12.6	190
26	Morphologyâ€Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2011, 1, 954-962.	19.5	183
27	Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. Advanced Materials, 2020, 32, e2002748.	21.0	181
28	Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Physical Review B, 2011, 83, .	3.2	180
29	Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10599-10604.	7.1	175
30	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, 2021, 1, .	21.2	172
31	Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nature Communications, 2015, 6, 6330.	12.8	162
32	Revealing the Cell–Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy. ACS Nano, 2017, 11, 8320-8328.	14.6	152
33	Influence of Water on the Performance of Organic Electrochemical Transistors. Chemistry of Materials, 2019, 31, 927-937.	6.7	140
34	Enhanced Photovoltaic Performance of Indacenodithiopheneâ€Quinoxaline Copolymers by Sideâ€Chain Modulation. Advanced Energy Materials, 2014, 4, 1400680.	19.5	134
35	Fused electron deficient semiconducting polymers for air stable electron transport. Nature Communications, 2018, 9, 416.	12.8	133
36	Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Science Advances, 2020, 6, .	10.3	131

#	Article	IF	CITATIONS
37	Balancing Ionic and Electronic Conduction for Highâ€Performance Organic Electrochemical Transistors. Advanced Functional Materials, 2020, 30, 1907657.	14.9	131
38	Energetic Control of Redoxâ€Active Polymers toward Safe Organic Bioelectronic Materials. Advanced Materials, 2020, 32, e1908047.	21.0	124
39	Role of the Anion on the Transport and Structure of Organic Mixed Conductors. Advanced Functional Materials, 2019, 29, 1807034.	14.9	116
40	Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration. Advanced Healthcare Materials, 2019, 8, e1901321.	7.6	115
41	Solution-Processable Zirconium Oxide Gate Dielectrics for Flexible Organic Field Effect Transistors Operated at Low Voltages. Chemistry of Materials, 2013, 25, 2571-2579.	6.7	110
42	Enhancementâ€Mode PEDOT:PSS Organic Electrochemical Transistors Using Molecular Deâ€Đoping. Advanced Materials, 2020, 32, e2000270.	21.0	109
43	Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy and Environmental Science, 2014, 7, 361-369.	30.8	108
44	Optical measurement of doping efficiency in poly(3-hexylthiophene) solutions and thin films. Physical Review B, 2015, 91, .	3.2	108
45	Organic Electronics for Point-of-Care Metabolite Monitoring. Trends in Biotechnology, 2018, 36, 45-59.	9.3	104
46	Roadmap on emerging hardware and technology for machine learning. Nanotechnology, 2021, 32, 012002.	2.6	104
47	Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers. Macromolecules, 2014, 47, 7151-7157.	4.8	102
48	Modification of Indacenodithiophene-Based Polymers and Its Impact on Charge Carrier Mobility in Organic Thin-Film Transistors. Journal of the American Chemical Society, 2020, 142, 652-664.	13.7	101
49	Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Physical Review B, 2012, 86, .	3.2	100
50	Real-Time Observation of Poly(3-alkylthiophene) Crystallization and Correlation with Transient Optoelectronic Properties. Macromolecules, 2011, 44, 6653-6658.	4.8	99
51	Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2013, 3, 1657-1663.	19.5	99
52	Role of Polymer Structure on the Conductivity of Nâ€Đoped Polymers. Advanced Electronic Materials, 2016, 2, 1600004.	5.1	99
53	Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Nature Materials, 2019, 18, 860-865.	27.5	99
54	Progress in Poly (3â€Hexylthiophene) Organic Solar Cells and the Influence of Its Molecular Weight on Device Performance. Advanced Energy Materials, 2018, 8, 1801001.	19.5	95

#	Article	IF	CITATIONS
55	Polymorphism controls the degree of charge transfer in a molecularly doped semiconducting polymer. Materials Horizons, 2018, 5, 655-660.	12.2	92
56	High-mobility, trap-free charge transport in conjugated polymer diodes. Nature Communications, 2019, 10, 2122.	12.8	92
57	Uncovering the Effects of Metal Contacts on Monolayer MoS ₂ . ACS Nano, 2020, 14, 14798-14808.	14.6	89
58	Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 611-620.	2.1	87
59	Laser-driven formation of a high-pressure phase in amorphous silica. Nature Materials, 2003, 2, 796-800.	27.5	86
60	Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene–Quinoxaline Copolymer. Advanced Energy Materials, 2013, 3, 806-814.	19.5	86
61	Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics. Journal of the American Chemical Society, 2015, 137, 5397-5405.	13.7	82
62	Engineering semiconducting polymers for efficient charge transport. MRS Communications, 2015, 5, 383-395.	1.8	78
63	Correlating the microstructure of thin films of poly[5,5-bis(3-dodecyl-2-thienyl)-2,2-bithiophene] with charge transport: Effect of dielectric surface energy and thermal annealing. Physical Review B, 2008, 78, .	3.2	74
64	Strain effects on the work function of an organic semiconductor. Nature Communications, 2016, 7, 10270.	12.8	74
65	Oneâ€Step Macroscopic Alignment of Conjugated Polymer Systems by Epitaxial Crystallization during Spinâ€Coating. Advanced Functional Materials, 2013, 23, 2368-2377.	14.9	73
66	Enhancing Quantum Yield via Local Symmetry Distortion in Lanthanide-Based Upconverting Nanoparticles. ACS Photonics, 2016, 3, 1523-1530.	6.6	72
67	Sequential Doping Reveals the Importance of Amorphous Chain Rigidity in Charge Transport of Semi-Crystalline Polymers. Journal of Physical Chemistry Letters, 2017, 8, 4974-4980.	4.6	72
68	Structural Effects of Gating Poly(3â€hexylthiophene) through an Ionic Liquid. Advanced Functional Materials, 2017, 27, 1701791.	14.9	70
69	Spectral Signatures and Spatial Coherence of Bound and Unbound Polarons in P3HT Films: Theory Versus Experiment. Journal of Physical Chemistry C, 2018, 122, 18048-18060.	3.1	70
70	Improving Quantum Yield of Upconverting Nanoparticles in Aqueous Media via Emission Sensitization. Nano Letters, 2018, 18, 2689-2695.	9.1	69
71	Microstructural and Electronic Origins of Openâ€Circuit Voltage Tuning in Organic Solar Cells Based on Ternary Blends. Advanced Energy Materials, 2015, 5, 1501335.	19.5	68
72	Mechanism of Crystallization and Implications for Charge Transport in Poly(3â€ethylhexylthiophene) Thin Films. Advanced Functional Materials, 2014, 24, 4515-4521.	14.9	66

#	Article	IF	CITATIONS
73	Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Scientific Reports, 2015, 5, 17849.	3.3	66
74	Mechanisms for Enhanced State Retention and Stability in Redoxâ€Gated Organic Neuromorphic Devices. Advanced Electronic Materials, 2019, 5, 1800686.	5.1	66
75	Role of Side hain Branching on Thinâ€Film Structure and Electronic Properties of Polythiophenes. Advanced Functional Materials, 2015, 25, 2616-2624.	14.9	65
76	Charge Transport Orthogonality in Allâ€₽olymer Blend Transistors, Diodes, and Solar Cells. Advanced Energy Materials, 2014, 4, 1301409.	19.5	64
77	Solution Based Selfâ€Assembly of an Array of Polymeric Thinâ€Film Transistors. Advanced Materials, 2007, 19, 3540-3543.	21.0	63
78	Naphthalenediimide Polymers with Finely Tuned Inâ€Chain Ï€â€Conjugation: Electronic Structure, Film Microstructure, and Charge Transport Properties. Advanced Materials, 2016, 28, 9169-9174.	21.0	63
79	On the transient response of organic electrochemical transistors. Organic Electronics, 2017, 45, 215-221.	2.6	62
80	Organic neuromorphic devices: Past, present, and future challenges. MRS Bulletin, 2020, 45, 619-630.	3.5	59
81	Bandgap Restructuring of the Layered Semiconductor Gallium Telluride in Air. Advanced Materials, 2016, 28, 6465-6470.	21.0	58
82	Tuning the bandgap of Cs ₂ AgBiBr ₆ through dilute tin alloying. Chemical Science, 2019, 10, 10620-10628.	7.4	58
83	Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer. Journal of Materials Chemistry C, 2015, 3, 4156-4161.	5.5	56
84	The Crucial Influence of Fullerene Phases on Photogeneration in Organic Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1400922.	19.5	54
85	Organic neuromorphic electronics for sensorimotor integration and learning in robotics. Science Advances, 2021, 7, eabl5068.	10.3	54
86	Optimized pulsed write schemes improve linearity and write speed for low-power organic neuromorphic devices. Journal Physics D: Applied Physics, 2018, 51, 224002.	2.8	53
87	Optical and Electronic Ion Channel Monitoring from Native Human Membranes. ACS Nano, 2020, 14, 12538-12545.	14.6	51
88	The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A Case Study on PBDTTTâ€Câ€T:PC ₇₁ BM. Advanced Materials, 2015, 27, 3868-3873.	21.0	46
89	Highâ€Gain Chemically Gated Organic Electrochemical Transistor. Advanced Functional Materials, 2021, 31, 2010868.	14.9	46
90	Direct Correlation of Charge Transfer Absorption with Molecular Donor:Acceptor Interfacial Area via Photothermal Deflection Spectroscopy. Journal of the American Chemical Society, 2015, 137, 5256-5259.	13.7	45

#	Article	IF	CITATIONS
91	Tradeâ€Off between Trap Filling, Trap Creation, and Charge Recombination Results in Performance Increase at Ultralow Doping Levels in Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1601149.	19.5	45
92	The Roles of Structural Order and Intermolecular Interactions in Determining Ionization Energies and Chargeâ€Transfer State Energies in Organic Semiconductors. Advanced Energy Materials, 2016, 6, 1601211.	19.5	45
93	The Effect of Ring Expansion in Thienobenzo[<i>b</i>]indacenodithiophene Polymers for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2019, 141, 18806-18813.	13.7	45
94	Signatures of Intracrystallite and Intercrystallite Limitations of Charge Transport in Polythiophenes. Macromolecules, 2016, 49, 7359-7369.	4.8	43
95	A Universal Platform for Fabricating Organic Electrochemical Devices. Advanced Electronic Materials, 2018, 4, 1800090.	5.1	43
96	Biomimetic Electronic Devices for Measuring Bacterial Membrane Disruption. Advanced Materials, 2018, 30, e1803130.	21.0	43
97	Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology. Journal of Photonics for Energy, 2014, 4, 040997.	1.3	42
98	Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor–Acceptor Copolymers. Chemistry of Materials, 2019, 31, 7033-7045.	6.7	39
99	Approaching Perfect Light Incoupling in Perovskite and Silicon Thin Film Solar Cells by Moth Eye Surface Textures. Advanced Theory and Simulations, 2018, 1, 1800030.	2.8	38
100	Organic electrochemical transistors as impedance biosensors. MRS Communications, 2014, 4, 189-194.	1.8	37
101	The Mechanism of Dedoping PEDOT:PSS by Aliphatic Polyamines. Journal of Physical Chemistry C, 2019, 123, 24328-24337.	3.1	37
102	Engineering Optically Switchable Transistors with Improved Performance by Controlling Interactions of Diarylethenes in Polymer Matrices. Journal of the American Chemical Society, 2020, 142, 11050-11059.	13.7	37
103	Reversible Electrochemical Phase Change in Monolayer to Bulk-like MoTe ₂ by Ionic Liquid Gating. ACS Nano, 2020, 14, 2894-2903.	14.6	37
104	Dual-gate organic thin film transistors as chemical sensors. Applied Physics Letters, 2009, 95, 133307.	3.3	36
105	Probing the electrical properties of highly-doped Al:ZnO nanowire ensembles. Journal of Applied Physics, 2010, 107, 074312.	2.5	36
106	Self-Assembly of Mammalian-Cell Membranes on Bioelectronic Devices with Functional Transmembrane Proteins. Langmuir, 2020, 36, 7325-7331.	3.5	36
107	Openâ€Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Chargeâ€Transfer Bands. Advanced Energy Materials, 2017, 7, 1601995.	19.5	35
108	Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design: from Theory to Devices. Advanced Functional Materials, 2021, 31, 2100723.	14.9	35

#	Article	IF	CITATIONS
109	Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors. Advanced Functional Materials, 2021, 31, 2104301.	14.9	35
110	Intrinsic and Doped Zinc Oxide Nanowires for Transparent Electrode Fabrication via Low-Temperature Solution Synthesis. Journal of Electronic Materials, 2009, 38, 586-595.	2.2	34
111	Unraveling the Effect of Conformational and Electronic Disorder in the Charge Transport Processes of Semiconducting Polymers. Advanced Functional Materials, 2018, 28, 1804142.	14.9	34
112	Anomalous Charge Transport in Conjugated Polymers Reveals Underlying Mechanisms of Trapping and Percolation. ACS Central Science, 2016, 2, 910-915.	11.3	33
113	Materials Strategies for Organic Neuromorphic Devices. Annual Review of Materials Research, 2021, 51, 47-71.	9.3	33
114	Highâ€Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene. Advanced Functional Materials, 2022, 32, 2109970.	14.9	33
115	Toward Conductive Mesocrystalline Assemblies: PbS Nanocrystals Cross-Linked with Tetrathiafulvalene Dicarboxylate. Chemistry of Materials, 2015, 27, 8105-8115.	6.7	32
116	Negative Isotope Effect on Fieldâ€Effect Hole Transport in Fully Substituted ¹³ Câ€Rubrene. Advanced Electronic Materials, 2017, 3, 1700018.	5.1	32
117	Optics of Perovskite Solar Cell Front Contacts. ACS Applied Materials & Interfaces, 2019, 11, 14693-14701.	8.0	32
118	How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268, 120559.	11.4	32
119	Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 24349-24357.	10.3	31
120	Core/Shell Approach to Dopant Incorporation and Shape Control in Colloidal Zinc Oxide Nanorods. Chemistry of Materials, 2016, 28, 3454-3461.	6.7	31
121	Influence of Perovskite Interface Morphology on the Photon Management in Perovskite/Silicon Tandem Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 15080-15086.	8.0	30
122	Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. ACS Nano, 2020, 14, 6570-6581.	14.6	30
123	Bias Stress Effects in Organic Thin Film Transistors. , 2007, , .		29
124	Perovskite Color Detectors: Approaching the Efficiency Limit. ACS Applied Materials & Interfaces, 2020, 12, 47831-47839.	8.0	29
125	Mixed Ionic–Electronic Conduction, a Multifunctional Property in Organic Conductors. Advanced Materials, 2022, 34, e2110406.	21.0	29
126	Redox transistors for neuromorphic computing. IBM Journal of Research and Development, 2019, 63, 9:1-9:9.	3.1	28

#	Article	IF	CITATIONS
127	Vertically Stacked Perovskite Detectors for Color Sensing and Color Vision. Advanced Materials Interfaces, 2020, 7, 2000459.	3.7	28
128	Multifunctional, Room-Temperature Processable, Heterogeneous Organic Passivation Layer for Oxide Semiconductor Thin-Film Transistors. ACS Applied Materials & Interfaces, 2020, 12, 2615-2624.	8.0	27
129	Phototuning Selectively Hole and Electron Transport in Optically Switchable Ambipolar Transistors. Advanced Functional Materials, 2020, 30, 1908944.	14.9	27
130	Nanoscopic Electrolyte-Gated Vertical Organic Transistors with Low Operation Voltage and Five Orders of Magnitude Switching Range for Neuromorphic Systems. Nano Letters, 2022, 22, 973-978.	9.1	27
131	Efficient Electronic Tunneling Governs Transport in Conducting Polymer-Insulator Blends. Journal of the American Chemical Society, 2022, 144, 10368-10376.	13.7	26
132	Contact Doping with Subâ€Monolayers of Strong Polyelectrolytes for Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400439.	19.5	25
133	In situ Parallel Training of Analog Neural Network Using Electrochemical Random-Access Memory. Frontiers in Neuroscience, 2021, 15, 636127.	2.8	24
134	Time―and Temperatureâ€Independent Local Carrier Mobility and Effects of Regioregularity in Polymerâ€Fullerene Organic Semiconductors. Advanced Electronic Materials, 2016, 2, 1500351.	5.1	23
135	Enhanced Cell–Chip Coupling by Rapid Femtosecond Laser Patterning of Soft PEDOT:PSS Biointerfaces. ACS Applied Materials & Interfaces, 2017, 9, 39116-39121.	8.0	23
136	Dual haracteristic Transistors Based on Semiconducting Polymer Blends. Advanced Electronic Materials, 2016, 2, 1600267.	5.1	20
137	Characterizing the Polymer:Fullerene Intermolecular Interactions. Chemistry of Materials, 2016, 28, 1446-1452.	6.7	20
138	The Role of Morphology in Optically Switchable Transistors Based on a Photochromic Molecule/pâ€₹ype Polymer Semiconductor Blend. Advanced Functional Materials, 2020, 30, 1907507.	14.9	20
139	Nonequilibrium Thermodynamics of Colloidal Gold Nanocrystals Monitored by Ultrafast Electron Diffraction and Optical Scattering Microscopy. ACS Nano, 2020, 14, 4792-4804.	14.6	20
140	Altered heparan sulfate metabolism during development triggers dopamine-dependent autistic-behaviours in models of lysosomal storage disorders. Nature Communications, 2021, 12, 3495.	12.8	20
141	Unraveling the Unconventional Order of a High-Mobility Indacenodithiophene–Benzothiadiazole Copolymer. ACS Macro Letters, 2021, 10, 1306-1314.	4.8	20
142	Understanding electrochemical properties of supported lipid bilayers interfaced with organic electronic devices. Journal of Materials Chemistry C, 2022, 10, 8050-8060.	5.5	20
143	Something out of nothing. Nature Materials, 2015, 14, 1077-1078.	27.5	19
144	Chemically Responsive Elastomers Exhibiting Unityâ€Order Refractive Index Modulation. Advanced Materials, 2018, 30, 1703912.	21.0	19

#	Article	IF	CITATIONS
145	Increased charge carrier mobility and molecular packing of a solution sheared diketopyrrolopyrrole-based donor–acceptor copolymer by alkyl side chain modification. Journal of Materials Chemistry C, 2019, 7, 3665-3674.	5.5	19
146	Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals. Nature Communications, 2021, 12, 1860.	12.8	19
147	Functional Infectious Nanoparticle Detector: Finding Viruses by Detecting Their Host Entry Functions Using Organic Bioelectronic Devices. ACS Nano, 2021, 15, 18142-18152.	14.6	19
148	Tuning the plasmonic absorption of metal reflectors by zinc oxide nano particles: Application in thin film solar cells. Nano Energy, 2014, 6, 167-172.	16.0	18
149	Copper interstitial recombination centers in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:n mathvariant="normal">N</mml:n </mml:msub></mml:mrow>. Physical Review B, 2018, 97, .</mml:math 	າກ 3.3 <td>าl:เธรา > </td>	า l:เธ รา >
150	Redox-Active Polymers Designed for the Circular Economy of Energy Storage Devices. ACS Energy Letters, 2021, 6, 3450-3457.	17.4	18
151	Title: Using Alignment and 2D Network Simulations to Study Charge Transport Through Doped ZnO Nanowire Thin Film Electrodes. Advanced Functional Materials, 2011, 21, 4691-4697.	14.9	17
152	Organic Transistors Incorporating Lipid Monolayers for Drug Interaction Studies. Advanced Materials Technologies, 2020, 5, 1900680.	5.8	17
153	Operation mechanism of organic electrochemical transistors as redox chemical transducers. Journal of Materials Chemistry C, 2021, 9, 12148-12158.	5.5	17
154	High-Performance Humidity Sensing in π-Conjugated Molecular Assemblies through the Engineering of Electron/Proton Transport and Device Interfaces. Journal of the American Chemical Society, 2022, 144, 2546-2555.	13.7	17
155	Confined organization of fullerene units along high polymer chains. Journal of Materials Chemistry C, 2013, 1, 5747.	5.5	16
156	Solid Solutions of Rare Earth Cations in Mesoporous Anatase Beads and Their Performances in Dye-Sensitized Solar Cells. Scientific Reports, 2015, 5, 16785.	3.3	16
157	Spectroscopic studies of dopant-induced conformational changes in poly (3-hexylthiophene) thin films. MRS Communications, 2017, 7, 728-734.	1.8	15
158	Ion conductivity through TEMPO-mediated oxidated and periodate oxidated cellulose membranes. Carbohydrate Polymers, 2020, 233, 115829.	10.2	15
159	Modular synthetic design enables precise control of shape and doping in colloidal zinc oxide nanorods. Journal of Materials Chemistry C, 2015, 3, 7172-7179.	5.5	14
160	Point defects in Cu 2 ZnSnSe 4 (CZTSe): Resonant Xâ€ray diffraction study of the lowâ€ŧemperature order/disorder transition. Physica Status Solidi (B): Basic Research, 2017, 254, 1700156.	1.5	14
161	Tuning Organic Electrochemical Transistor Threshold Voltage using Chemically Doped Polymer Gates. Advanced Materials, 2022, 34, .	21.0	14
162	Electrothermal phenomena in zinc oxide nanowires and contacts. Applied Physics Letters, 2012, 100, 163105.	3.3	13

#	Article	IF	CITATIONS
163	Miscibility and Acid Strength Govern Contact Doping of Organic Photovoltaics with Strong Polyelectrolytes. Macromolecules, 2015, 48, 5162-5171.	4.8	13
164	High-Throughput Open-Air Plasma Activation of Metal-Oxide Thin Films with Low Thermal Budget. ACS Applied Materials & Interfaces, 2018, 10, 37223-37232.	8.0	13
165	Towards biomimetic electronics that emulate cells. MRS Communications, 2020, 10, 398-412.	1.8	13
166	Growth-Controlled Broad Emission in Phase-Pure Two-Dimensional Hybrid Perovskite Films. Chemistry of Materials, 2021, 33, 7290-7300.	6.7	13
167	Color Sensing by Optical Antennas: Approaching the Quantum Efficiency Limit. ACS Photonics, 2019, 6, 2041-2048.	6.6	12
168	Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional Devices. Advanced Materials, 2022, 34, .	21.0	11
169	Effect of oxygen vacancies and strain on the phonon spectrum of HfO2 thin films. Journal of Applied Physics, 2017, 121, .	2.5	10
170	Enhancing the energy conversion efficiency of low mobility solar cells by a 3D device architecture. Journal of Materials Chemistry C, 2019, 7, 10289-10296.	5.5	10
171	Additive solution deposition of multi-layered semiconducting polymer films for design of sophisticated device architectures. Journal of Materials Chemistry C, 2019, 7, 953-960.	5.5	10
172	Wearable biosensors and sample handling strategies. , 2020, , 65-88.		10
173	Electrical and Environmental Stability of Polymer Thin-Film Transistors. , 2006, , 108-131.		9
174	Electronic Doping and Enhancement of n hannel Polycrystalline OFET Performance through Gate Oxide Modifications with Aminosilanes. Advanced Materials Interfaces, 2021, 8, 2100320.	3.7	9
175	A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films. Journal of Applied Physics, 2011, 109, .	2.5	8
176	Enhancing Fullereneâ€Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. Angewandte Chemie, 2014, 126, 13084-13089.	2.0	8
177	Branched and linear A2–D–A1–D–A2isoindigo-based solution-processable small molecules for organic field-effect transistors and solar cells. RSC Advances, 2015, 5, 85460-85469.	3.6	8
178	Longâ€Term Structural Evolution of an Intercalated Layered Semiconductor. Advanced Functional Materials, 2017, 27, 1605038.	14.9	8
179	Combining Photosynthesis and Photovoltaics: A Hybrid Energy-Harvesting System Using Optical Antennas. ACS Applied Materials & Interfaces, 2020, 12, 40261-40268.	8.0	8
180	Band-Gap-Engineered Transparent Perovskite Solar Modules to Combine Photovoltaics with Photosynthesis. ACS Applied Materials & Interfaces, 2021, 13, 39230-39238.	8.0	8

#	Article	IF	CITATIONS
181	Improving molecular alignment and charge percolation in semiconducting polymer films with highly localized electronic states through tailored thermal annealing. Journal of Materials Chemistry C, 2021, 9, 15848-15857.	5.5	8
182	On the growth, structure and dynamics of P3EHT crystals. Journal of Materials Chemistry C, 2020, 8, 8155-8170.	5.5	7
183	A Stacked Hybrid Organic/Inorganic Electrochemical Randomâ€Access Memory for Scalable Implementation. Advanced Electronic Materials, 2022, 8, 2100426.	5.1	7
184	Detection of Ganglioside-Specific Toxin Binding with Biomembrane-Based Bioelectronic Sensors. ACS Applied Bio Materials, 2021, 4, 7942-7950.	4.6	7
185	Beyond Tristimulus Color Vision with Perovskite-Based Multispectral Sensors. ACS Applied Materials & Interfaces, 2022, 14, 11645-11653.	8.0	7
186	Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers. Advanced Electronic Materials, 2022, 8, .	5.1	7
187	Conjugated polymers with controllable interfacial order and energetics enable tunable heterojunctions in organic and colloidal quantum dot photovoltaics. Journal of Materials Chemistry A, 2022, 10, 1788-1801.	10.3	6
188	Impedance sensing of antibiotic interactions with a pathogenic E. coli outer membrane supported bilayer. Biosensors and Bioelectronics, 2022, 204, 114045.	10.1	6
189	Wafer-scale microfabrication of flexible organic electrochemical transistors. Flexible and Printed Electronics, 2022, 7, 034001.	2.7	6
190	Modeling of the effect of intentionally introduced traps on hole transport in single-crystal rubrene. Physical Review B, 2014, 89, .	3.2	5
191	Biaxial Texturing of Inorganic Photovoltaic Thin Films Using Low Energy Ion Beam Irradiation During Growth. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	4
192	Reversible Doping and Photo Patterning of Polymer Nanowires. Advanced Electronic Materials, 2020, 6, 2000469.	5.1	4
193	White OLEDs: Color in the Corners: ITOâ€Free White OLEDs with Angular Color Stability (Adv. Mater.) Tj ETQq1 ∷	1 0,78431 21.0	4 rgBT /Ovei
194	Critical analysis of self-doping and water-soluble n-type organic semiconductors: structures and mechanisms. Journal of Materials Chemistry C, 0, , .	5.5	3
195	Efficiency Enhancement of Gallium Arsenide Photovoltaics Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers. Journal of Nanomaterials, 2015, 2015, 1-6.	2.7	2
196	Impact of Organic Semiconductor Microstructure on Transport: Basic Concepts. Materials and Energy, 2016, , 293-323.	0.1	2
197	Electrochemical Transistors: Enhancementâ€Mode PEDOT:PSS Organic Electrochemical Transistors Using Molecular Deâ€Doping (Adv. Mater. 19/2020). Advanced Materials, 2020, 32, 2070148.	21.0	2
198	Solar Cells: Reâ€evaluating the Role of Sterics and Electronic Coupling in Determining the Openâ€Circuit Voltage of Organic Solar Cells (Adv. Mater. 42/2013). Advanced Materials, 2013, 25, 5990-5990.	21.0	1

#	Article	IF	CITATIONS
199	High-resolution x-ray analysis of graphene grown on 4H–SiC (000) at low pressures. Journal of Materials Research, 2014, 29, 439-446.	2.6	1
200	Improving the electrical performance of solution processed oligothiophene thin-film transistors via structural similarity blending. Journal of Materials Chemistry C, 2017, 5, 5048-5054.	5.5	1
201	Realizing high aspect ratio silver micro and nanostructures by microcontact printing of alkyl thiol self-assembled monolayers. MRS Advances, 2019, 4, 2441-2451.	0.9	1
202	Brush-Painted Solar Cells from Pre-Crystallized Components in a Nonhalogenated Solvent System Prepared by a Simple Stirring Technique. Macromolecules, 2020, 53, 8276-8285.	4.8	1
203	Microstructure, Charge Transport and Trapping in Anisotropic Polymeric Thin Film Transistors. , 2007, , .		0
204	Relating microstructure to transport in organic semiconductor transistors. , 2009, , .		0
205	Organic Solar Cells: On the Efficiency of Charge Transfer State Splitting in Polymer:Fullerene Solar Cells (Adv. Mater. 16/2014). Advanced Materials, 2014, 26, 2607-2607.	21.0	0
206	Local sensorimotor control and learning in robotics with organic neuromorphic electronics. , 0, , .		0
207	Organic mixed conductors for bioelectronics: understanding the fundamentals and how they affect operation. , 0, , .		0