Timothy C Berkelbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5958466/publications.pdf

Version: 2024-02-01

66 papers 10,578 citations

34 h-index 65 g-index

66 all docs 66
docs citations

66 times ranked 11667 citing authors

#	Article	IF	CITATIONS
1	Full-frequency dynamical Bethe–Salpeter equation without frequency and a study of double excitations. Journal of Chemical Physics, 2022, 156, 044114.	3.0	11
2	Correlation-Consistent Gaussian Basis Sets for Solids Made Simple. Journal of Chemical Theory and Computation, 2022, 18, 1595-1606.	5. 3	19
3	Dark-Exciton Driven Energy Funneling into Dielectric Inhomogeneities in Two-Dimensional Semiconductors. Nano Letters, 2022, 22, 2843-2850.	9.1	17
4	Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials. Journal of Chemical Theory and Computation, 2022, 18, 3438-3446.	5. 3	7
5	Linear Free Energy Relationships in Electrostatic Catalysis. ACS Catalysis, 2022, 12, 8237-8241.	11.2	5
6	Regional Embedding Enables High-Level Quantum Chemistry for Surface Science. Journal of Physical Chemistry Letters, 2021, 12, 1104-1109.	4.6	33
7	Vibrational heat-bath configuration interaction. Journal of Chemical Physics, 2021, 154, 074104.	3.0	14
8	Fast periodic Gaussian density fitting by range separation. Journal of Chemical Physics, 2021, 154, 131104.	3.0	17
9	Simulations of Trions and Biexcitons in Layered Hybrid Organic-Inorganic Lead Halide Perovskites. Physical Review Letters, 2021, 126, 216402.	7.8	9
10	Dynamical correlation energy of metals in large basis sets from downfolding and composite approaches. Journal of Chemical Physics, 2021, 154, 211105.	3.0	13
11	Improving MP2 bandgaps with low-scaling approximations to EOM-CCSD. Journal of Chemical Physics, 2021, 155, 081101.	3.0	8
12	Absorption Spectra of Solids from Periodic Equation-of-Motion Coupled-Cluster Theory. Journal of Chemical Theory and Computation, 2021, 17, 6387-6394.	5.3	13
13	Tight distance-dependent estimators for screening two-center and three-center short-range Coulomb integrals over Gaussian basis functions. Journal of Chemical Physics, 2021, 155, 124106.	3.0	9
14	Full-frequency GW without frequency. Journal of Chemical Physics, 2021, 154, 041101.	3.0	32
15	Polytypism, Anisotropic Transport, and Weyl Nodes in the van der Waals Metal TaFeTe4. Journal of the American Chemical Society, 2021, 143, 109-113.	13.7	4
16	Tunable Cr ⁴⁺ Molecular Color Centers. Journal of the American Chemical Society, 2021, 143, 21350-21363.	13.7	29
17	Recent developments in the P <scp>y</scp> SCF program package. Journal of Chemical Physics, 2020, 153, 024109.	3.0	388
18	Improved Fast Randomized Iteration Approach to Full Configuration Interaction. Journal of Chemical Theory and Computation, 2020, 16, 5572-5585.	5.3	8

#	Article	IF	Citations
19	Active space approaches combining coupled-cluster and perturbation theory for ground states and excited states. Molecular Physics, 2020, 118, e1808726.	1.7	9
20	Quantum plasmons and intraband excitons in doped nanoparticles: Insights from quantum chemistry. Journal of Chemical Physics, 2020, 152, 224704.	3.0	5
21	A Unification of the Holstein Polaron and Dynamic Disorder Pictures of Charge Transport in Organic Crystals. Physical Review X, 2020, 10, .	8.9	30
22	Excitons in Solids from Periodic Equation-of-Motion Coupled-Cluster Theory. Journal of Chemical Theory and Computation, 2020, 16, 3095-3103.	5.3	43
23	<i>Ab Initio</i> Linear and Pump–Probe Spectroscopy of Excitons in Molecular Crystals. Journal of Physical Chemistry Letters, 2020, 11, 2241-2246.	4.6	4
24	Special topic on dynamics of open quantum systems. Journal of Chemical Physics, 2020, 152, 020401.	3.0	8
25	Beyond Walkers in Stochastic Quantum Chemistry: Reducing Error Using Fast Randomized Iteration. Journal of Chemical Theory and Computation, 2019, 15, 4834-4850.	5.3	18
26	Dielectric disorder in two-dimensional materials. Nature Nanotechnology, 2019, 14, 832-837.	31.5	223
27	Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides. Nature Communications, 2019, 10, 3419.	12.8	46
28	Coupled-cluster impurity solvers for dynamical mean-field theory. Physical Review B, 2019, 100, .	3.2	37
29	Optical Properties of Layered Hybrid Organic–Inorganic Halide Perovskites: A Tight-Binding GW-BSE Study. Journal of Physical Chemistry Letters, 2019, 10, 6189-6196.	4.6	51
30	Large Band Edge Tunability in Colloidal Nanoplatelets. Nano Letters, 2019, 19, 7124-7129.	9.1	15
31	AbÂlnitio Lifetime and Concomitant Double-Excitation Character of Plasmons at Metallic Densities. Physical Review Letters, 2019, 122, 226402.	7.8	15
32	Vertex Corrections to the Polarizability Do Not Improve the <i>GW</i> Approximation for the Ionization Potential of Molecules. Journal of Chemical Theory and Computation, 2019, 15, 2925-2932.	5.3	21
33	Environmentally sensitive theory of electronic and optical transitions in atomically thin semiconductors. Physical Review B, 2018, 97, .	3.2	93
34	Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides. Annual Review of Condensed Matter Physics, 2018, 9, 379-396.	14.5	68
35	P <scp>y</scp> SCF: the Pythonâ€based simulations of chemistry framework. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1340.	14.6	894
36	Communication: Random-phase approximation excitation energies from approximate equation-of-motion coupled-cluster doubles. Journal of Chemical Physics, 2018, 149, 041103.	3.0	17

#	Article	IF	CITATIONS
37	On the Relation between Equation-of-Motion Coupled-Cluster Theory and the <i>GW</i> Approximation. Journal of Chemical Theory and Computation, 2018, 14, 4224-4236.	5. 3	58
38	Gaussian-Based Coupled-Cluster Theory for the Ground-State and Band Structure of Solids. Journal of Chemical Theory and Computation, 2017, 13, 1209-1218.	5. 3	171
39	Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nature Communications, 2017, 8, 15251.	12.8	526
40	Linear and nonlinear spectroscopy from quantum master equations. Journal of Chemical Physics, 2017, 147, 244109.	3.0	42
41	Gaussian and plane-wave mixed density fitting for periodic systems. Journal of Chemical Physics, 2017, 147, 164119.	3.0	66
42	On the accuracy of the Pad $\tilde{\mathbb{A}}$ ©-resummed master equation approach to dissipative quantum dynamics. Journal of Chemical Physics, 2016, 144, 154106.	3.0	17
43	Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>W</mml:mi> related approximations. Physical Review B. 2016, 93</mml:mrow></mml:math>	ുപ്പു പുപ്പു	070>
44	Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides. Physical Review B, 2015, 92, .	3.2	68
45	Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo. Physical Review B, 2015, 92, .	3.2	88
46	Extending the applicability of Redfield theories into highly non-Markovian regimes. Journal of Chemical Physics, 2015, 143, 194108.	3.0	41
47	Observation of biexcitons in monolayer WSe2. Nature Physics, 2015, 11, 477-481.	16.7	531
48	Observation of Excitonic Rydberg States in Monolayer MoS ₂ and WS ₂ by Photoluminescence Excitation Spectroscopy. Nano Letters, 2015, 15, 2992-2997.	9.1	327
49	Microscopic theory of singlet exciton fission. III. Crystalline pentacene. Journal of Chemical Physics, 2014, 141, 074705.	3.0	160
50	Multiphonon Relaxation Slows Singlet Fission in Crystalline Hexacene. Journal of the American Chemical Society, 2014, 136, 10654-10660.	13.7	114
51	Length-Dependent Conductance of Oligothiophenes. Journal of the American Chemical Society, 2014, 136, 10486-10492.	13.7	127
52	Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>:78 :mn>2<td>1.814 nnil:mn></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	:78 :mn>2 <td>1.814 nnil:mn></td>	1.814 n ni l:mn>
53	Tailoring the Electronic Structure in Bilayer Molybdenum Disulfide via Interlayer Twist. Nano Letters, 2014, 14, 3869-3875.	9.1	278
54	Impact of Molecular Symmetry on Single-Molecule Conductance. Journal of the American Chemical Society, 2013, 135, 11724-11727.	13.7	57

#	Article	IF	CITATIONS
55	Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Physical Review B, 2013, 88, .	3.2	737
56	Coherent quantum dynamics in donor–bridge–acceptor systems: beyond the hopping and super-exchange mechanisms. New Journal of Physics, 2013, 15, 105020.	2.9	30
57	Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. Journal of Chemical Physics, 2013, 138, 114103.	3.0	311
58	The Quantum Coherent Mechanism for Singlet Fission: Experiment and Theory. Accounts of Chemical Research, 2013, 46, 1321-1329.	15.6	262
59	Microscopic theory of singlet exciton fission. I. General formulation. Journal of Chemical Physics, 2013, 138, 114102.	3.0	210
60	Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 2013, 12, 554-561.	27.5	1,896
61	Reduced density matrix hybrid approach: Application to electronic energy transfer. Journal of Chemical Physics, 2012, 136, 084104.	3.0	57
62	Reduced density matrix hybrid approach: An efficient and accurate method for adiabatic and non-adiabatic quantum dynamics. Journal of Chemical Physics, 2012, 136, 034113.	3.0	58
63	Quantum quench spectroscopy of a Luttinger liquid: Ultrarelativistic density wave dynamics due to fractionalization in anXXZchain. Physical Review B, 2011, 84, .	3.2	21
64	Concerted Hydrogen-Bond Dynamics in the Transport Mechanism of the Hydrated Proton: A First-Principles Molecular Dynamics Study. Physical Review Letters, 2009, 103, 238302.	7.8	200
65	Optimizing the switching function for nonequilibrium free-energy calculations: An on-the-fly approach. Journal of Chemical Physics, 2009, 130, 174705.	3.0	8
66	New Directions in the GW/BSE Framework. , 0, , .		0