Danielle Laurencin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5958385/publications.pdf

Version: 2024-02-01

93 papers 3,467 citations

33 h-index 55 g-index

103 all docs 103 docs citations

103 times ranked 4769 citing authors

#	Article	IF	CITATIONS
1	From <i>Operando</i> Raman Mechanochemistry to "NMR Crystallography― Understanding the Structures and Interconversion of Zn-Terephthalate Networks Using Selective ¹⁷ O-Labeling. Chemistry of Materials, 2022, 34, 2292-2312.	6.7	11
2	<i>Operando</i> acoustic analysis: a valuable method for investigating reaction mechanisms in mechanochemistry. Chemical Science, 2022, 13, 6328-6334.	7.4	8
3	Cost-efficient and user-friendly 170/180 labeling procedures of fatty acids using mechanochemistry. Chemical Communications, 2021, 57, 6812-6815.	4.1	9
4	A ⁴³ Ca nuclear magnetic resonance perspective on octacalcium phosphate and its hybrid derivatives. Magnetic Resonance in Chemistry, 2021, 59, 1048-1061.	1.9	8
5	Looking into the dynamics of molecular crystals of ibuprofen and terephthalic acid using ¹⁷ O and ² H nuclear magnetic resonance analyses. Magnetic Resonance in Chemistry, 2021, 59, 975-990.	1.9	11
6	Labeling and Probing the Silica Surface Using Mechanochemistry and 17 Oâ€NMR Spectroscopy**. Chemistry - A European Journal, 2021, 27, 12574-12588.	3.3	10
7	A novel multinuclear solid-state NMR approach for the characterization of kidney stones. Magnetic Resonance, 2021, 2, 653-671.	1.9	4
8	Recent advances in solidâ€state nuclear magnetic resonance spectroscopy of quadrupolar nuclei. Magnetic Resonance in Chemistry, 2021, 59, 851-852.	1.9	1
9	Stacking Versatility in Alkali-Mixed Honeycomb Layered NaKNi ₂ TeO ₆ . Inorganic Chemistry, 2021, 60, 14310-14317.	4.0	9
10	Long-term <i>in vivo</i> performances of polylactide/iron oxide nanoparticles core–shell fibrous nanocomposites as MRI-visible magneto-scaffolds. Biomaterials Science, 2021, 9, 6203-6213.	5.4	4
11	A soft-chemistry approach to the synthesis of amorphous calcium ortho/pyrophosphate biomaterials of tunable composition. Acta Biomaterialia, 2020, 103, 333-345.	8.3	18
12	Unveiling the Structure and Reactivity of Fatty-Acid Based (Nano) materials Thanks to Efficient and Scalable $\langle \sup 17 \langle \sup 0 $ and $\langle \sup 18 \langle \sup 0 $ -Isotopic Labeling Schemes. Journal of the American Chemical Society, 2020, 142, 21068-21081.	13.7	24
13	Direct ¹⁷ O Isotopic Labeling of Oxides Using Mechanochemistry. Inorganic Chemistry, 2020, 59, 13050-13066.	4.0	24
14	Molecular complexes and main-chain organometallic polymers based on Janus bis(carbenes) fused to metalloporphyrins. Dalton Transactions, 2020, 49, 7005-7014.	3.3	9
15	Recent directions in the solid-state NMR study of synthetic and natural calcium phosphates. Solid State Nuclear Magnetic Resonance, 2020, 107, 101663.	2.3	15
16	Advances in the synthesis and structure of \hat{l} ±-canaphite: a multitool and multiscale study. CrystEngComm, 2020, 22, 3130-3143.	2.6	8
17	Bis-benzoxaboroles: Design, Synthesis, and Biological Evaluation as Carbonic Anhydrase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 1205-1210.	2.8	19
18	Controlled Anchoring of Iron Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic–Inorganic Nanocomposites for Magneto-Scaffolds. ACS Applied Materials & Linterfaces, 2019, 11, 9519-9529.	8.0	29

#	Article	IF	CITATIONS
19	Synthesis, characterization and modeling of self-assembled porphyrin nanorods. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1346-1354.	0.8	2
20	Porous Porphyrinâ€Based Organosilica Nanoparticles for NIR Twoâ€Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 2018, 28, 1800235.	14.9	50
21	A multinuclear NMR perspective on the complexation between bisboronic acids and bisbenzoxaboroles with <i>cis</i> -diols. New Journal of Chemistry, 2018, 42, 2815-2823.	2.8	16
22	Electrochemical Mg alloying properties along the Sb1-xBix solid solution. Electrochimica Acta, 2018, 259, 276-283.	5.2	30
23	Gemcitabine Delivery and Photodynamic Therapy in Cancer Cells via Porphyrinâ€Ethyleneâ€Based Periodic Mesoporous Organosilica Nanoparticles. ChemNanoMat, 2018, 4, 46-51.	2.8	31
24	New Layered Polythiophene-Silica Composite Through the Self-Assembly and Polymerization of Thiophene-Based Silylated Molecular Precursors. Molecules, 2018, 23, 2510.	3.8	5
25	Pushing the limits of sensitivity and resolution for natural abundance ⁴³ Ca NMR using ultra-high magnetic field (35.2 T). Chemical Communications, 2018, 54, 9591-9594.	4.1	22
26	Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy. Nature Communications, 2017, 8, 14104.	12.8	55
27	Unleashing the Potential of ¹⁷ Oâ€NMR Spectroscopy Using Mechanochemistry. Angewandte Chemie - International Edition, 2017, 56, 6803-6807.	13.8	47
28	Insight into the local environment of magnesium and calcium in low-coordination-number organo-complexes using ²⁵ Mg and ⁴³ Ca solid-state NMR: a DFT study. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 208-218.	0.5	4
29	Innentitelbild: Unleashing the Potential of ¹⁷ 0â€NMR Spectroscopy Using Mechanochemistry (Angew. Chem. 24/2017). Angewandte Chemie, 2017, 129, 6780-6780.	2.0	0
30	Unleashing the Potential of ¹⁷ Oâ€NMR Spectroscopy Using Mechanochemistry. Angewandte Chemie, 2017, 129, 6907-6911.	2.0	14
31	Durability testing of an iodate-substituted hydroxyapatite designedÂfor the conditioning of 129 I. Journal of Nuclear Materials, 2017, 484, 324-331.	2.7	31
32	Coordination Networks Based on Boronate and Benzoxaborolate Ligands. Crystals, 2016, 6, 48.	2.2	8
33	Development of a new family of monolithic calcium (pyro)phosphate glasses by soft chemistry. Acta Biomaterialia, 2016, 41, 320-327.	8.3	13
34	⁸⁷ Sr, ¹¹⁹ Sn, ¹²⁷ I Single and { ¹ H/ ¹⁹ F}â€Double Resonance Solidâ€State NMR Experiments: Application to Inorganic Materials and Nanobuilding Blocks. ChemistrySelect, 2016, 1, 4509-4519.	1.5	8
35	Experimental and Theoretical Study of the Reactivity of Gold Nanoparticles Towards Benzimidazoleâ€2â€ylidene Ligands. Chemistry - A European Journal, 2016, 22, 10446-10458.	3 . 3	36
36	Adsorption of benzoxaboroles on hydroxyapatite phases. Acta Biomaterialia, 2016, 41, 342-350.	8.3	10

3

#	Article	IF	Citations
37	From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective. Acta Biomaterialia, 2016, 31, 348-357.	8.3	33
38	Formulation of benzoxaborole drugs in PLLA: from materials preparation to in vitro release kinetics and cellular assays. Journal of Materials Chemistry B, 2016, 4, 257-272.	5.8	17
39	French Studies on the Development of Potential Conditioning Matrices for Iodine 129. Materials Research Society Symposia Proceedings, 2015, 1744, 15-20.	0.1	11
40	The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension. PLoS ONE, 2015, 10, e0136780.	2.5	36
41	NMR and EPR Characterization of Functionalized Nanodiamonds. Journal of Physical Chemistry C, 2015, 119, 12408-12422.	3.1	36
42	Drug–Polymer Electrostatic Complexes as New Structuring Agents for the Formation of Drug-Loaded Ordered Mesoporous Silica. Langmuir, 2015, 31, 12839-12844.	3.5	27
43	Intercalation of Benzoxaborolate Anions in Layered Double Hydroxides: Toward Hybrid Formulations for Benzoxaborole Drugs. Chemistry of Materials, 2015, 27, 1242-1254.	6.7	37
44	Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations. Journal of Materials Science: Materials in Medicine, 2015, 26, 223.	3.6	14
45	Coordination Polymers Based on Alkylboronate Ligands: Synthesis, Characterization, and Computational Modelling. European Journal of Inorganic Chemistry, 2015, 2015, 1182-1191.	2.0	9
46	Immobilization of iodine into a hydroxyapatite structure prepared by cementation. Journal of Materials Chemistry A, 2014, 2, 20923-20932.	10.3	30
47	Recent NMR developments applied to organic–inorganic materials. Progress in Nuclear Magnetic Resonance Spectroscopy, 2014, 77, 1-48.	7.5	78
48	Investigation of the local environment of iodate in hydroxyapatite by combination of X-ray absorption spectroscopy and DFT modeling. RSC Advances, 2014, 4, 14700-14707.	3.6	25
49	Reactivity of gold nanoparticles towards N-heterocyclic carbenes. Dalton Transactions, 2014, 43, 5978.	3.3	77
50	A combined experimental-computational study of benzoxaborole crystal structures. CrystEngComm, 2014, 16, 4999.	2.6	27
51	Ultrasmall NHC-coated gold nanoparticles obtained through solvent free thermolysis of organometallic Au(i) complexes. Dalton Transactions, 2014, 43, 15713-15718.	3.3	59
52	Surface Functionalization of Detonation Nanodiamonds by Phosphonic Dichloride Derivatives. Langmuir, 2014, 30, 9239-9245.	3.5	14
53	Synthesis of TiO ₂ –Poly(3-hexylthiophene) Hybrid Particles through Surface-Initiated Kumada Catalyst-Transfer Polycondensation. Langmuir, 2014, 30, 11340-11347.	3.5	19
54	Phosphonate coupling molecules for the control of surface/interface properties and the synthesis of nanomaterials. Dalton Transactions, 2013, 42, 12569.	3.3	195

#	Article	IF	Citations
55	A biocompatible calcium bisphosphonate coordination polymer: towards a metal-linker synergistic therapeutic effect?. CrystEngComm, 2013, 15, 9899.	2.6	49
56	Whewellite, CaC2O4âH2O: structural study by a combined NMR, crystallography and modelling approach. CrystEngComm, 2013, 15, 8840.	2.6	40
57	Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using Ânanomolecular monolayers. Nature Materials, 2013, 12, 118-122.	27.5	223
58	Development of 43Ca solid state NMR spectroscopy as a probe of local structure in inorganic and molecular materials. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 68, 1-40.	7.5	68
59	Boronate Ligands in Materials: Determining Their Local Environment by Using a Combination of IR/Solidâ \in State NMR Spectroscopies and DFT Calculations. Chemistry - A European Journal, 2013, 19, 880-891.	3.3	19
60	A rare example of a porous Ca-MOF for the controlled release of biologically active NO. Chemical Communications, 2013, 49, 7773.	4.1	138
61	Improvement of the Oxidative Stability of Nanodiamonds by Surface Phosphorylation. Chemistry of Materials, 2013, 25, 2051-2055.	6.7	18
62	NMR Investigation of the Role of Osteocalcin and Osteopontin at the Organic–Inorganic Interface in Bone. Langmuir, 2013, 29, 13873-13882.	3.5	72
63	Structural study of calcium phosphonates: a combined synchrotron powder diffraction, solid-state NMR and first-principle calculations approach. CrystEngComm, 2013, 15, 8763.	2.6	26
64	⁸⁷ Sr Solid-State NMR as a Structurally Sensitive Tool for the Investigation of Materials: Antiosteoporotic Pharmaceuticals and Bioactive Glasses. Journal of the American Chemical Society, 2012, 134, 12611-12628.	13.7	68
65	Connecting ruthenium substituted Keggin-type tungstophosphates by oxotungstic bridges: Evidence for the steric effect of {RuL3}2+ (L3â€=â€Î·6-arene, (DMSO)3) fragments. Comptes Rendus Chimie, 2012, 15, 135-142.	0.5	14
66	Synthesis and characterization of carboxystyryl end-functionalized poly(3-hexylthiophene)/TiO2 hybrids in view of photovoltaic applications. Synthetic Metals, 2012, 162, 1615-1622.	3.9	21
67	Solid State NMR Investigation of Intact Human Bone Quality: Balancing Issues and Insight into the Structure at the Organic–Mineral Interface. Journal of Physical Chemistry C, 2012, 116, 6320-6331.	3.1	42
68	Surface modification of calcium carbonate with phosphonic acids. Journal of Materials Chemistry, 2012, 22, 1212-1218.	6.7	26
69	Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine. Journal of Materials Chemistry, 2011, 21, 17609.	6.7	59
70	High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals. Journal of Materials Research, 2011, 26, 2355-2368.	2.6	21
71	Synthesis and Characterization of Crystalline Structures Based on Phenylboronate Ligands Bound to Alkaline Earth Cations. Inorganic Chemistry, 2011, 50, 7802-7810.	4.0	35
72	Influence of Magnesium Substitution on the Basic Properties of Hydroxyapatites. Journal of Physical Chemistry C, 2011, 115, 24317-24327.	3.1	52

#	Article	IF	CITATIONS
73	Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate. Journal of Materials Chemistry, 2011, 21, 18783.	6.7	25
74	Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass. Bone, 2011, 49, 395-403.	2.9	71
75	Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology. Journal of Non-Crystalline Solids, 2011, 357, 3548-3555.	3.1	20
76	Magnesium incorporation into hydroxyapatite. Biomaterials, 2011, 32, 1826-1837.	11.4	296
77	Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 1081-1091.	2.8	70
78	Advanced Solid State NMR Techniques for the Investigation of the Organic-Mineral Interfaces in Biomaterials. Materials Research Society Symposia Proceedings, 2009, 1236, 1.	0.1	2
79	Two-dimensional 43Ca–1H correlation solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2009, 35, 32-36.	2.3	34
80	Implementation of High Resolution ⁴³ Ca Solid State NMR Spectroscopy: Toward the Elucidation of Calcium Sites in Biological Materials. Journal of the American Chemical Society, 2009, 131, 13430-13440.	13.7	54
81	Experimental and Computational Study of the Framework Fluxionality of Organometallic Derivatives of Polyoxometalates: Analysis of the Effect of the Metal and of the Solvent. Organometallics, 2009, 28, 3140-3151.	2.3	24
82	A Solid-State NMR Study of Lead and Vanadium Substitution into Hydroxyapatite. Journal of the American Chemical Society, 2009, 131, 5145-5152.	13.7	37
83	Natural abundance ⁴³ Ca solidâ€state NMR characterisation of hydroxyapatite: identification of the two calcium sites. Magnetic Resonance in Chemistry, 2008, 46, 347-350.	1.9	60
84	New perspectives on calcium environments in inorganic materials containing calcium–oxygen bonds: A combined computational–experimental 43Ca NMR approach. Chemical Physics Letters, 2008, 464, 42-48.	2.6	83
85	A High-Resolution ⁴³ Ca Solid-State NMR Study of the Calcium Sites of Hydroxyapatite. Journal of the American Chemical Society, 2008, 130, 2412-2413.	13.7	54
86	Theoretical Study of the Relative Stabilities of the \hat{l}_{\pm} /	(X) 4jŒTQc	ე0 07 0 rgBT /0
87	An Ab Initio Quantum Chemical Investigation of ⁴³ Ca NMR Interaction Parameters for the Ca ²⁺ Sites in Organic Complexes and in Metalloproteins. Journal of Physical Chemistry A, 2008, 112, 9807-9813.	2.5	24
88	Synthesis and reactivity of $\{Ru(p\text{-cymene})\}2\text{+derivatives}$ of $[Nb6O19]8\hat{a}^{\circ}$: a rational approach towards fluxional organometallic derivatives of polyoxometalates. Dalton Transactions, 2007, , 1334-1345.	3.3	47
89	Relationship between structure, fluxionality and racemization activity in organometallic derivatives of polyoxometalates. Tetrahedron: Asymmetry, 2007, 18, 367-371.	1.8	17
90	Experimental and Theoretical Study of the Regiospecific Coordination of Rulland OsllFragments on the Lacunary Polyoxometalate [α-PW11O39]7 Journal of Physical Chemistry A, 2006, 110, 6345-6355.	2.5	52

Danielle Laurencin

#	Article	IF	CITATION
91	A new organometallic heteropolytungstate related to [Sb2W22O74(OH)2]12â \in ": synthesis and structural characterisation of the bis-{Ru(p-cymene)}2+-containing anion [Sb2W20O70{Ru(p-cymene)}2]10â \in ". Chemical Communications, 2005, , 5524.	4.1	67
92	Framework Fluxionality of Organometallic Oxides: Synthesis, Crystal Structure, EXAFS, and DFT Studies on [{Ru(Î-6-arene)}4Mo4O16] Complexes. Chemistry - A European Journal, 2004, 10, 208-217.	3.3	45
93	Organometallic polyoxometalates: synthesis and structural analysis of (η6-arene) ruthenium-containing polyoxomolybdates. Journal of Molecular Structure, 2003, 656, 67-77.	3.6	27