
Feng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5957931/publications.pdf Version: 2024-02-01

FENC 7HANC

#	Article	IF	CITATIONS
1	Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 2013, 339, 819-823.	6.0	12,725
2	Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 2005, 8, 1263-1268.	7.1	4,110
3	In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520, 186-191.	13.7	2,237
4	C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353, aaf5573.	6.0	1,647
5	MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biology, 2014, 15, 554.	3.8	1,614
6	Multimodal fast optical interrogation of neural circuitry. Nature, 2007, 446, 633-639.	13.7	1,602
7	Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health, The, 2020, 5, e475-e483.	4.7	1,595
8	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	13.6	1,427
9	High-throughput functional genomics using CRISPR–Cas9. Nature Reviews Genetics, 2015, 16, 299-311.	7.7	998
10	Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell, 2015, 60, 385-397.	4.5	971
11	Molecular and Cellular Approaches for Diversifying and Extending Optogenetics. Cell, 2010, 141, 154-165.	13.5	919
12	Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protocols, 2010, 5, 439-456.	5.5	895
13	Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols, 2017, 12, 828-863.	5.5	858
14	Optical control of mammalian endogenous transcription and epigenetic states. Nature, 2013, 500, 472-476.	13.7	733
15	Channelrhodopsin-2 and optical control of excitable cells. Nature Methods, 2006, 3, 785-792.	9.0	641
16	Circuit-breakers: optical technologies for probing neural signals and systems. Nature Reviews Neuroscience, 2007, 8, 577-581.	4.9	586
17	Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 2016, 353, aad5147.	6.0	523
18	Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nature Neuroscience, 2008, 11, 631-633.	7.1	490

Feng Zhang

#	Article	IF	CITATIONS
19	The Microbial Opsin Family of Optogenetic Tools. Cell, 2011, 147, 1446-1457.	13.5	471
20	Targeting and Readout Strategies for Fast Optical Neural Control <i>In Vitro</i> and <i>In Vivo</i> . Journal of Neuroscience, 2007, 27, 14231-14238.	1.7	450
21	Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science, 2020, 369, 1077-1084.	6.0	302
22	Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proceedings of the United States of America, 2020, 117, 15193-15199.	3.3	196
23	Ongoing global and regional adaptive evolution of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	196
24	Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing. Nature Human Behaviour, 2020, 4, 972-982.	6.2	93
25	Molecular Tools and Approaches for Optogenetics. Biological Psychiatry, 2012, 71, 1033-1038.	0.7	55
26	Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape. MBio, 2022, 13, e0013522.	1.8	35
27	Building an international consortium for tracking coronavirus health status. Nature Medicine, 2020, 26, 1161-1165.	15.2	23
28	Genome-wide CRISPR screens reveal synthetic lethal interaction between CREBBP and EP300 in diffuse large B-cell lymphoma. Cell Death and Disease, 2021, 12, 419.	2.7	21
29	Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
30	Lee et al. reply. Nature, 2010, 468, E4-E5.	13.7	3
31	1PT128 Crystal Structure of a light-gated cation channel, channeirhodopsin(The 50th Annual Meeting) Tj ETQq1	1 0.7843	14 rgBT /Ove