Robert P Mason

List of Publications by Year

 in descending order[^0]
1 Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environmental Science \& 4.6 1,729
Technology, 2013, 47, 4967-4983.
3 Cosmochimica Acta, 1994, 58, 3191-3198.
11 The Influence of Sulfide on Solid-Phase Mercury Bioavailability for Methylation by Pure Cultures 4.6 270
ofDesulfobulbus propionicus(1pr3). Environmental Science \& Technology, 2001, 35, 127-132.The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea0.6
19 Air-sea exchange in the global mercury cycle. Global Biogeochemical Cycles, 2007, 21, . 193

20 Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in
$0.9 \quad 182$ coastal waters. Marine Chemistry, 2007, 107, 278-294.

21	Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmospheric Environment, 2009, 43, 2278-2285.	1.9	179
22	Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry. Journal of Geophysical Research, 2003, 108, .	3.3	160
23	Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades. Geochimica Et Cosmochimica Acta, 2001, 65, 4445-4451.	1.6	158
24	The distribution and speciation of mercury in the South and equatorial Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 937-956.	0.6	157
25	Sedimentâ^Water Fluxes of Mercury in Lavaca Bay, Texas. Environmental Science \& Technology, 1999, 33, 663-669.	4.6	155

2

Observational and Modeling Constraints on Clobal Anthropogenic Enrichment of Mercury.
Environmental Science \& Technology, 2015, 49, 4036-4047.
4.6

152
Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes.
Marine Chemistry, 2006, 102, 134-147.
28 Accumulation of mercury in estuarine food chains. Biogeochemistry, 1998, 40, 235-247. 1.7149
29 Mercury in Lake Michigan. Environmental Science \& Technology, 1997, 31, 942-947. 44.648
$\left.\begin{array}{lll}\text { Mercury in the Atlantic Ocean: factors controlling airâ€"sea exchange of mercury and its distribution } \\ \text { in the upper waters. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2829-2853. }\end{array}\right] .0 .6$ 144

Speciation and Fate of Arsenic in Three Lakes of the Aberjona Watershed. Environmental Science \&

Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin.
Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of
35 Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environmental Toxicology and Chemistry, 1999, 2.2 127
18, 2438-2447.

Methylmercury Production in Estuarine Sediments: Role of Organic Matter. Environmental Science
40 \& Technology, 2013, 47, 695-700.

Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochimica Et Cosmochimica Acta, 2016, 194, 153-162.
43 The fate and transport of mercury, methylmercury, and other trace metals in chesapeake bay $\quad 103$

44 Mercury and methylmercury cycling in sediments of the midâ€Atlantic continental shelf and slope.
Limnology and Oceanography, 2010, 55, 2703-2722.
1.6

101
Mercury associated with colloidal material in an estuarine and an open-ocean environment. Marine
Chemistry, 1996, 55, 177-188.

Mercury Isotope Study of Sources and Exposure Pathways of Methylmercury in Estuarine Food Webs in the Northeastern U.S.. Environmental Science \& Technology, 2014, 48, 10089-10097.
4.6

An examination of the factors influencing the flux of mercury, methylmercury and other
49 An examination of the factors influencing the flux of mercury, methylmercury
constituents from estuarine sediment. Marine Chemistry, 2006, 102, 96-110.
0.9

90

Progress on Understanding Atmospheric Mercury Hampered by Uncertain Measurements.
$50 \quad$ Erogress on Understanding Atmospheric Mercury Hampered by uncertain Measurements.
4.6

90

A Critical Time for Mercury Science to Inform Clobal Policy. Environmental Science \& Technology,
2018, 52, 9556-9561.
4.6

90

Mercury and methylmercury in Hudson River sediment: impact of tidal resuspension on partitioning
and methylation. Marine Chemistry, 2004, 90, 75-89.
59 The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate:
mesocosm study. Marine Chemistry, 2006, 102,300-315.
60 Anthropogenic mercury emissions in South Africa: Coal combustion in power plants. Atmospheric
Environment, 2008, 42, 6620-6626.
$0.9 \quad 83$

61	Mercury concentration and speciation in the coastal and open ocean boundary layer. Journal of Geophysical Research, 2007, 112, .	3.3
62	Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model. Environmental Research, 2012, 119, 118-131.	3.7
63	The sources and composition of mercury in Pacific Ocean rain. Journal of Atmospheric Chemistry, 1992, 14, 489-500.	1.4
64	Mercury Speciation in Drainage from the New Idria Mercury Mine, California. Environmental Science \& Technology, 2000, 34, 4773-4779.	4.6
65	How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? â $€^{\text {" }}$ Implications for evaluating the effectiveness of the Minamata Convention. Science of the Total Environment, 2019, 674, 58-70.	3.9

$66 \quad \begin{aligned} & \text { Mercury } \\ & \text { 173-191. }\end{aligned}$7576
Concentration of Mercury, Methylmercury, Cadmium, Lead, Arsenic, and Selenium in the Rain and
67 Stream Water of Two Contrasting Watersheds in Western Maryland. Water Research, 2001, 35, 5.3 74
4039-4052.
METHYLMERCURY UPTAKE AND DISTRIBUTION KINETICS IN SHEEPSHEAD MINNOWS, CYPRINODON
68 VARIEGATUS, AFTER EXPOSURE TO CH3Hg-SPIKED FOOD. Environmental Toxicology and Chemistry, 2004, 2.2 74 23, 2138.69 The concentration, speciation and sources of mercury in Chesapeake Bay precipitation. Atmospheric1.972Environment, 1997, 31, 3541-3550.Sources of Mercury Exposure for U.S. Seafood Consumers: Implications for Policy. EnvironmentalHealth Perspectives, 2010, 118, 137-143.

73	An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Marine Chemistry, 2015, 177, 753-762.	0.9	70
74	Atmospheric deposition to the Chesapeake Bay watershedâ $€$ "regional and local sources. Atmospheric Environment, 1997, 31, 3531-3540.	1.9	69
75	Development and application of a poly(2,2â€-dithiodianiline) (PDTDA)-coated screen-printed carbon electrode in inorganic mercury determination. Electrochimica Acta, 2010, 55, 4240-4246.	2.6	66
76	Investigation of Porewater Sampling Methods for Mercury and Methylmercury. Environmental Science \& Technology, 1998, 32, 4031-4040.	4.6	65
77	MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology, 2011, 20, 1713-1725.	1.1	65
78	Drivers of Surface Ocean Mercury Concentrations and Airâe"Sea Exchange in the West Atlantic Ocean. Environmental Science \& Technology, 2013, 47, 7757-7765.	4.6	65
79	Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environment International, 2018, 120, 333-344.	4.8	65
80	Sediment-Porewater Partitioning, Total Sulfur, and Methylmercury Production in Estuaries. Environmental Science \& Technology, 2014, 48, 954-960.	4.6	63
81	An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises. Limnology and Oceanography: Methods, 2012, 10, 90-100.	1.0	62
82	The effect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem: a mesocosm study. Marine Chemistry, 2004, 86, 121-137.	0.9	61
83	Dimethylmercury Formation Mediated by Inorganic and Organic Reduced Sulfur Surfaces. Scientific Reports, 2016, 6, 27958.	1.6	61
84	Arctic mercury cycling. Nature Reviews Earth \& Environment, 2022, 3, 270-286.	12.2	60
85	Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes) Tj E		5

Total mercury in the water column near the shelf edge of the European continental margin. Marine
The concentration and distribution of mercury in Lake Michigan. Science of the Total Environment,
$1998,213,213-228$.

$92 \quad$| Estimate of mercury emission from gasoline and diesel fuel consumption, San Francisco Bay area, |
| :--- |
| California. Atmospheric Environment, 2005, 39, 101-105. |

$93 \quad$ Mercury Fate and Transport in the Clobal Atmosphere. , 2009, , .

The impact of sea ice on the air-sea exchange of mercury in the Arctic Ocean. Deep-Sea Research Part l:
Oceanographic Research Papers, 2019, 144, 28-38.

Factors Controlling the Bioavailability of Ingested Methylmercury to Channel Catfish and Atlantic
Sturgeon. Environmental Science \& Technology, 2002, 36, 5124-5129.
$4.6 \quad 41$

Sources of water column methylmercury across multiple estuaries in the Northeast U.S.. Marine
Chemistry, 2015, 177, 721-730.

97	Methylmercury accumulation and fluxes across the intestine of channel catfish, Ictalurus punctat Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 132, 247-2
98	Effect of tidal resuspension on benthicâ€"pelagic coupling in an experimental ecosystem study. Ecology - Progress Series, 2010, 413, 33-53.
99	A new method for the investigation of mercury redox chemistry in natural waters utilizing deflata TeflonÂ® bags and additions of isotopically labeled mercury. Analytica Chimica Acta, 2006, 558, 21
100	The air-sea exchange of mercury in the low latitude Pacific and Atlantic Oceans. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 122, 17-28.
101	Mercury and methylmercury incidence and bioaccumulation in plankton from the central Pacific Ocean. Marine Chemistry, 2015, 177, 772-780.

102 Experimental evidence for recovery of mercury-contaminated fish populations. Nature, 2022, 601, 74-78.
13.7

38

103 The Global Mercury Cycle: Oceanic and Anthropogenic Aspects. , 1996, , 85-108.

37

Metal accumulation in Baltimore Harbor: current and past inputs. Applied Geochemistry, 2004, 19,
1.4

37
1801-1825.
An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles
105 by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Marine
1.1

Environmental Research, 2015, 110, 45-52.
Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the

109	Estimation of mercuryâ€sulfide speciation in sediment pore waters using octanolâ $€$ "water partitioning and implications for availability to methylating bacteria. Environmental Toxicology and Chemistry, 1999, 18, 2138-2141.	2.2	35
110	Organomercury Compounds in the Environment. , 0, , 57-99.		35
111	Determination of inorganic mercury using a polyaniline and polyaniline-methylene blue coated screen-printed carbon electrode. International Journal of Environmental Analytical Chemistry, 2010, 90, 671-685.	1.8	35
112	Benefits of Regulating Hazardous Air Pollutants from Coal and Oil-Fired Utilities in the United States. Environmental Science \& Technology, 2016, 50, 2117-2120.	4.6	35
113	Investigations into the bioavailability and bioaccumulation of mercury and other trace metals to the sea cucumber, Sclerodactyla briareus, using in vitro solubilization. Marine Pollution Bulletin, 2003, 46, 1600-1608.	2.3	34
114	Decadal mercury trends in San Francisco Estuary sediments. Environmental Research, 2007, 105, 53-66.	3.7	34
115	Mercury contamination history of an estuarine floodplain reconstructed from a 210 Pb -dated sediment core (Berg River, South Africa). Marine Pollution Bulletin, 2009, 59, 116-122.	2.3	34
116	Role of Sediment Resuspension on Estuarine Suspended Particulate Mercury Dynamics. Environmental Science \& Technology, 2018, 52, 7736-7744.	4.6	34
117	Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the Delaware Estuary. Aquatic Geochemistry, 2016, 22, 313-336.	1.5	33
118	Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters. Marine Chemistry, 2017, 196, 116-125.	0.9	32
119	An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire. Science of the Total Environment, 2019, 665, 1158-1167.	3.9	32
120	The Global Marine Selenium Cycle: Insights From Measurements and Modeling. Global Biogeochemical Cycles, 2018, 32, 1720-1737.	1.9	30
121	The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria. PLoS ONE, 2015, 10, e0138333.	1.1	30

Factors Controlling Mercury and Methylmercury Concentrations in Largemouth Bass (Micropterus) Tj ETQq0 00 rgBT /Overlock 10 Tf 50
Toxicology, 2005, 49, 528-545.
Mercury bioaccumulation increases with latitude in a coastal marine fish (Atlantic) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf 50187
$1009-1015$.

127	Spatial and temporal trophic transfer dynamics of mercury and methylmercury into zooplankton and phytoplankton of Long Island Sound. Limnology and Oceanography, 2017, 62, 1122-1138.	1.6	27
128	Rapid Increase in the Lateral Transport of Trace Elements Induced by Soil Erosion in Major Karst Regions in China. Environmental Science \& Technology, 2019, 53, 4206-4214.	4.6	27
129	An Examination of the Oxidation of Elemental Mercury in the Presence of Halide Surfaces. Journal of Atmospheric Chemistry, 2004, 48, 107-130.	1.4	24
130	Mercury and metals in South African precipitation. Atmospheric Environment, 2013, 79, 286-298.	1.9	24
131	Exposure of bivalve shellfish to titania nanoparticles under an environmental-spill scenario: Encounter, ingestion and egestion. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 137-149.	0.4	24
132	Effect of ligands and other metals on the uptake of mercury and methylmercury across the gills and the intestine of the blue crab (Callinectes sapidus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 131, 185-196.	1.3	23
133	Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochimica Et Cosmochimica Acta, 2018, 222, 569-583.	1.6	23

```
135 Connecting mercury science to policy: from sources to seafood. Reviews on Environmental Health,2016, 31, 17-20.
```

1.5

19
137 Methylmercury Bioaccumulation in an Urban Estuary: Delaware River, USA. Estuaries and Coasts, 2017,40, 1358-1370.
18
Controls on methylmercury accumulation in northern Gulf of Mexico sediments. Estuarine, Coastal 0.9 17
138 and Shelf Science, 2015, 159, 50-59.
1.1 19

The effect of aqueous speciation and cellular ligand binding on the biotransformation and

bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation, 2016, 27, 29-36.
136and Shelf Science, 2015, 159, 50-59.
4.6 17
Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury
139 Burden in Tibet, China. Environmental Science \& Technology, 2018, 52, 8838-8847.Historic contamination alters mercury sources and cycling in temperate estuaries relative touncontaminated sites. Water Research, 2021, 190, 116684.

Speciation and Distribution of Atmospheric Mercury over the Northern Chesapeake Bay. ACS

145	Patterns in forage fish mercury concentrations across Northeast US estuaries. Environmental Research, 2021, 194, 110629.	3.7	14
146	The effect of thiolate organic compounds on methylmercury accumulation and redistribution in sheepshead minnows, <i>Cyprinodon variegatus<li〉. Environmental Toxicology and Chemistry, 2001, 20, 1557-1563.	2.2	13
147	Mercury and methylmercury uptake and trophic transfer from marine diatoms to copepods and field collected zooplankton. Marine Environmental Research, 2021, 170, 105446.	1.1	12
148	Distribution of total mercury and methylated mercury species in Central Arctic Ocean water and ice. Marine Chemistry, 2022, 242, 104105.	0.9	10
149	Century-old mercury pollution: Evaluating the impacts on local fish from the eastern United States. Chemosphere, 2020, 259, 127484.	4.2	9
150	Effects of shear stress and hard clams on seston, microphytobenthos, and nitrogen dynamics in mesocosms with tidal resuspension. Marine Ecology - Progress Series, 2013, 479, 25-45.	0.9	9
151	Air-sea Exchange and Marine Boundary Layer Atmospheric Transformation of Hg and their Importance in the Global Mercury Cycle. , 2005, , 213-239.		7
152	The interaction of mercury and methylmercury with chalcogenide nanoparticles. Environmental Pollution, 2019, 255, 113346.	3.7	7
153	STURM: Resuspension mesocosms with realistic bottom shear stress and water column turbulence for benthic-pelagic coupling studies: Design and applications. Journal of Experimental Marine Biology and Ecology, 2018, 499, 35-50.	0.7	6

154 Geochemistry of Mercury in the Marine Environment. , 2019, , 301-308.
The Urban Atmosphere: An Important Source of Trace Metals to Nearby Waters?. ACS Symposium Series, 2002, , 203-222.
$0.5 \quad 5$
MEASURING SULFIDE ACCUMULATION IN DIFFUSIVE GRADIENTS IN THIN FILMS BY MEANS OF PURGE AND
156 TRAP FOLLOWED BY ION-SELECTIVE ELECTRODE. Environmental Toxicology and Chemistry, 2005, 24, 3043.

$2.2 \quad 5$ -5
157 Comparison of reactive gaseous mercury measured by KCl -coated denuders and cation exchange
membranes during the Pacific GEOTRACES GP15 expedition. Atmospheric Environment, 2021, 244, 117973. $1.9 \quad 5$Spatial coverage and temporal trends of over-water, air-surface exchange, surface and deep sea water4mercury measurements. , 2009, , 323-380.
159 8th International Estuarine Biogeochemistry Symposium: Introduction. Marine Chemistry, 2006, $102,1$. 0.9 3

[^0]: Source: https://exaly.com/author-pdf/5957626/publications.pdf
 Version: 2024-02-01

