Leilei Mei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5957454/publications.pdf

Version: 2024-02-01

623734 677142 27 539 14 22 citations h-index g-index papers 29 29 29 604 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Task modulates the orthographic and phonological representations in the bilateral ventral Occipitotemporal cortex. Brain Imaging and Behavior, 2022, 16, 1695-1707.	2.1	7
2	Neural representation of phonological information during Chinese character reading. Human Brain Mapping, 2022, 43, 4013-4029.	3.6	5
3	Neural Representation in Visual Word Form Area during Word Reading. Neuroscience, 2021, 452, 49-62.	2.3	6
4	The effects of word concreteness on cross-language neural pattern similarity during semantic categorization. Journal of Neurolinguistics, 2021, 58, 100978.	1.1	3
5	Language distance in orthographic transparency affects crossâ€language pattern similarity between native and nonâ€native languages. Human Brain Mapping, 2021, 42, 893-907.	3.6	14
6	The contributions of the left fusiform subregions to successful encoding of novel words. Brain and Cognition, 2021, 148, 105690.	1.8	1
7	The contributions of the left hippocampus and bilateral inferior parietal lobule to formâ€meaning associative learning. Psychophysiology, 2021, 58, e13834.	2.4	6
8	Similar activation patterns in the bilateral dorsal inferior frontal gyrus for monolingual and bilingual contexts in second language production. Neuropsychologia, 2021, 156, 107857.	1.6	1
9	The emotional adaptation aftereffect discriminates between individuals with high and low levels of depressive symptoms. Cognition and Emotion, 2021, , 1-14.	2.0	1
10	Functional laterality of the anterior and posterior occipitotemporal cortex is affected by language experience and processing strategy, respectively. Neuropsychologia, 2020, 137, 107301.	1.6	4
11	Functional Dissociations of the Left Anterior and Posterior Occipitotemporal Cortex for Semantic and Non-semantic Phonological Access. Neuroscience, 2020, 430, 94-104.	2.3	6
12	Lexical learning in a new language leads to neural pattern similarity with word reading in native language. Human Brain Mapping, 2019, 40, 98-109.	3.6	28
13	Cross-Language Pattern Similarity in the Bilateral Fusiform Cortex Is Associated with Reading Proficiency in Second Language. Neuroscience, 2019, 410, 254-263.	2.3	17
14	Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning. Frontiers in Human Neuroscience, 2017, 11, 424.	2.0	10
15	How age of acquisition influences brain architecture in bilinguals. Journal of Neurolinguistics, 2015, 36, 35-55.	1.1	40
16	Long-term experience with Chinese language shapes the fusiform asymmetry of English reading. NeuroImage, 2015, 110, 3-10.	4.2	36
17	Native language experience shapes neural basis of addressed and assembled phonologies. NeuroImage, 2015, 114, 38-48.	4.2	29
18	Artificial Language Training Reveals the Neural Substrates Underlying Addressed and Assembled Phonologies. PLoS ONE, 2014, 9, e93548.	2.5	33

#	ARTICLE	IF	CITATIONS
19	Learning to read words in a new language shapes the neural organization of the prior languages. Neuropsychologia, 2014, 65, 156-168.	1.6	21
20	Language-general and -specific white matter microstructural bases for reading. Neurolmage, 2014, 98, 435-441.	4.2	29
21	Orthographic transparency modulates the functional asymmetry in the fusiform cortex: An artificial language training study. Brain and Language, 2013, 125, 165-172.	1.6	51
22	The contribution of the left mid-fusiform cortical thickness to Chinese and English reading in a large Chinese sample. NeuroImage, 2013, 65, 250-256.	4.2	15
23	Facilitating Memory for Novel Characters by Reducing Neural Repetition Suppression in the Left Fusiform Cortex. PLoS ONE, 2010, 5, e13204.	2.5	34
24	The "visual word form area―is involved in successful memory encoding of both words and faces. Neurolmage, 2010, 52, 371-378.	4.2	69
25	Cultural neurolinguistics. Progress in Brain Research, 2009, 178, 159-171.	1.4	33
26	Sex-dependent neurofunctional predictors of long-term maintenance of visual word learning. Neuroscience Letters, 2008, 430, 87-91.	2.1	21
27	Neural predictors of auditory word learning. NeuroReport, 2008, 19, 215-219.	1.2	19