List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5956318/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Metamaterial with sign-toggling thermal expansivity inspired by Islamic motifs in Spain. Journal of Science: Advanced Materials and Devices, 2022, 7, 100401.                                    | 1.5 | 3         |
| 2  | An exact deflection solution to a type of cantilever with partially built-in end using strong boundary conditions. International Journal of Mechanical Engineering Education, 2021, 49, 72-79.   | 0.6 | 3         |
| 3  | Sensing Materials: Composites and Hybrid Materials. , 2021, , .                                                                                                                                  |     | 0         |
| 4  | A perfect 2D auxetic sliding mechanism based on an Islamic geometric pattern. Engineering Research<br>Express, 2021, 3, 015025.                                                                  | 0.8 | 15        |
| 5  | An Auxetic System Based on Interconnected Y-Elements Inspired by Islamic Geometric Patterns.<br>Symmetry, 2021, 13, 865.                                                                         | 1.1 | 13        |
| 6  | Metamaterial honeycomb with sign-toggling expansion coefficients that manifests an Islamic mosaic pattern at the Alhambra Palace. Advanced Composites and Hybrid Materials, 2021, 4, 966-978.    | 9.9 | 19        |
| 7  | An Auxetic Metamaterial with Tunable Positive to Negative Hygrothermal Expansion by means of<br>Counterâ€Rotating Crosses. Physica Status Solidi (B): Basic Research, 2021, 258, 2100137.        | 0.7 | 18        |
| 8  | Adjustable positive and negative hygrothermal expansion metamaterial inspired by the Maltese cross.<br>Royal Society Open Science, 2021, 8, 210593.                                              | 1.1 | 17        |
| 9  | Mechanics of Metamaterials with Negative Parameters. Engineering Materials, 2020, , .                                                                                                            | 0.3 | 70        |
| 10 | Negative Hygrothermal Expansion of Reinforced Double Arrowhead Microstructure. Physica Status<br>Solidi (B): Basic Research, 2020, 257, 1800055.                                                 | 0.7 | 17        |
| 11 | Maximum Stresses in Rectangular Auxetic Membranes. Physica Status Solidi (B): Basic Research, 2020,<br>257, 2000300.                                                                             | 0.7 | 5         |
| 12 | Metacomposite structure with sign-changing coefficients of hygrothermal expansions inspired by<br>Islamic motif. Composite Structures, 2020, 251, 112660.                                        | 3.1 | 22        |
| 13 | Extraction of Mindlin plates' shear correction factors from Reddy plate theory. Proceedings of the<br>Institution of Civil Engineers: Engineering and Computational Mechanics, 2020, 173, 37-44. | 0.4 | 1         |
| 14 | Metacomposite with auxetic and in situ sign reversible thermal expansivity upon temperature fluctuation. Composites Communications, 2020, 19, 30-36.                                             | 3.3 | 29        |
| 15 | Composite metamaterial square grids with sign-flipping expansion coefficients leading to a type of<br>Islamic design. SN Applied Sciences, 2020, 2, 1.                                           | 1.5 | 22        |
| 16 | Auxetic Microstructures. Engineering Materials, 2020, , 9-51.                                                                                                                                    | 0.3 | 3         |
| 17 | Negative Compressibility. Engineering Materials, 2020, , 427-463.                                                                                                                                | 0.3 | 0         |
| 18 | Auxetic Composites with Enhanced Moduli. Engineering Materials, 2020, , 273-322.                                                                                                                 | 0.3 | 0         |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Elasticity of Auxetic Beams. Engineering Materials, 2020, , 219-236.                                                                                                                                      | 0.3 | 0         |
| 20 | Negative Thermal Expansion. Engineering Materials, 2020, , 351-426.                                                                                                                                       | 0.3 | 0         |
| 21 | Thin Auxetic Plates. Engineering Materials, 2020, , 75-107.                                                                                                                                               | 0.3 | 0         |
| 22 | Analogies Across Auxetic Models. Engineering Materials, 2020, , 53-74.                                                                                                                                    | 0.3 | 0         |
| 23 | Metamaterials and Islamic Geometric Patterns. Engineering Materials, 2020, , 655-693.                                                                                                                     | 0.3 | 0         |
| 24 | Sign-Switching of Metamaterial Properties. Engineering Materials, 2020, , 523-527.                                                                                                                        | 0.3 | 0         |
| 25 | Negative Moisture Expansion, Negative Hygrothermal Expansion, and Negative Environmental<br>Expansion. Engineering Materials, 2020, , 465-507.                                                            | 0.3 | 0         |
| 26 | Auxetic Composites with Mixed Auxeticity. Engineering Materials, 2020, , 237-272.                                                                                                                         | 0.3 | 1         |
| 27 | Auxetic Membranes. Engineering Materials, 2020, , 323-350.                                                                                                                                                | 0.3 | 0         |
| 28 | Sign-Switching of Poisson's Ratio with Temperature Change Reversals. Engineering Materials, 2020, ,<br>591-630.                                                                                           | 0.3 | 0         |
| 29 | Experimental and numerical investigation of novel Savonius wind turbine. Wind Engineering, 2019, 43, 247-262.                                                                                             | 1.1 | 13        |
| 30 | A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive<br>Poisson's ratio signs. Composite Structures, 2019, 226, 111256.                                          | 3.1 | 39        |
| 31 | A 2D auxetikos system based on interconnected shurikens. SN Applied Sciences, 2019, 1, 1.                                                                                                                 | 1.5 | 15        |
| 32 | Effect of Solutionizing Time on Improving the Microstructure and Mechanical Properties of Aged AZ80 Mg Alloy. Journal of Materials Engineering and Performance, 2019, 28, 6836-6852.                      | 1.2 | 7         |
| 33 | Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions. Advanced Composites and Hybrid Materials, 2019, 2, 657-669.                                     | 9.9 | 29        |
| 34 | Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines. Clean<br>Technologies, 2019, 1, 205-223.                                                                             | 1.9 | 15        |
| 35 | 2D metamaterial with in-plane positive and negative thermal expansion and thermal shearing based on interconnected alternating bimaterials. Materials Research Express, 2019, 6, 115804.                  | 0.8 | 35        |
| 36 | Longitudinal wave speed in rectangular slabs with mixed restraints in lateral directions. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2019, 172, 153-161. | 0.4 | 1         |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Strategies for Enhancing the Low Wind Speed Performance of H-Darrieus Wind Turbine—Part 1. Clean<br>Technologies, 2019, 1, 185-204.                                                         | 1.9 | 15        |
| 38 | Computational Optimization of Adaptive Hybrid Darrieus Turbine: Part 1. Fluids, 2019, 4, 90.                                                                                                | 0.8 | 10        |
| 39 | Longitudinal wave speed in cylindrical auxetic rods with elastic constraint in radial direction.<br>European Journal of Mechanics, A/Solids, 2019, 75, 443-449.                             | 2.1 | 6         |
| 40 | A composite metamaterial with sign switchable elastic and hygrothermal properties induced by stress direction and environmental change reversals. Composite Structures, 2019, 220, 185-193. | 3.1 | 28        |
| 41 | An Anisotropic Auxetic 2D Metamaterial Based on Sliding Microstructural Mechanism. Materials, 2019, 12, 429.                                                                                | 1.3 | 12        |
| 42 | Metamaterials with Poisson's ratio sign toggling by means of microstructural duality. SN Applied<br>Sciences, 2019, 1, 1.                                                                   | 1.5 | 37        |
| 43 | Composite microstructures with Poisson's ratio sign switching upon stress reversal. Composite<br>Structures, 2019, 209, 34-44.                                                              | 3.1 | 42        |
| 44 | Negative Environmental Expansion for Interconnected Array of Rings and Sliding Rods. Physica Status<br>Solidi (B): Basic Research, 2019, 256, 1800032.                                      | 0.7 | 25        |
| 45 | Longitudinal wave speed in auxetic plates with elastic constraint in width direction. Archive of<br>Applied Mechanics, 2019, 89, 659-668.                                                   | 1.2 | 10        |
| 46 | A Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Small Wind Turbines. Journal of<br>Power and Energy Engineering, 2019, 07, 27-44.                                         | 0.3 | 24        |
| 47 | Revisiting the elasticity solution for a simply supported beam under sinusoidal load. International<br>Journal of Mechanical Engineering Education, 2018, 46, 41-49.                        | 0.6 | 3         |
| 48 | Three-layered plate exhibiting auxeticity based on stretching and bending modes. Composite<br>Structures, 2018, 194, 643-651.                                                               | 3.1 | 25        |
| 49 | Simplified Design Equations for a Class of Rhombic Auxetic Plates. MATEC Web of Conferences, 2018, 206, 01009.                                                                              | 0.1 | 1         |
| 50 | Auxeticity of Concentric Auxetic-Conventional Foam Rods with High Modulus Interface Adhesive.<br>Materials, 2018, 11, 223.                                                                  | 1.3 | 13        |
| 51 | A convenient and accurate wide-range parameter relationship between Buckingham and Morse potential energy functions. Molecular Physics, 2018, 116, 1127-1132.                               | 0.8 | 3         |
| 52 | Analogies across auxetic models based on deformation mechanism. Physica Status Solidi - Rapid<br>Research Letters, 2017, 11, 1600440.                                                       | 1.2 | 92        |
| 53 | Defect Clustering in Rare-Earth-Doped BaTiO <sub>3</sub> and SrTiO <sub>3</sub> and Its Influence on Dopant Incorporation. Journal of Physical Chemistry C, 2017, 121, 23642-23648.         | 1.5 | 35        |
| 54 | 2D Structures Exhibiting Negative Area Compressibility. Physica Status Solidi (B): Basic Research, 2017, 254, 1600682.                                                                      | 0.7 | 30        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Refined shear correction of polygonal plates with static loads. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2017, 170, 167-173.            | 0.4 | 5         |
| 56 | An Accurate Design Equation for the Maximum Deflection in a Class of Auxetic Sectorial Plates.<br>Physica Status Solidi (B): Basic Research, 2017, 254, 1600784.                           | 0.7 | 7         |
| 57 | Auxetic and Negative Thermal Expansion Structure Based on Interconnected Array of Rings and Sliding<br>Rods. Physica Status Solidi (B): Basic Research, 2017, 254, 1600775.                | 0.7 | 26        |
| 58 | On the self starting of darrieus turbine : An experimental investigation with secondary rotor. , 2017, , .                                                                                 |     | 6         |
| 59 | Shear Deformation in a Class of Thick Hexagonal Plates. Physica Status Solidi (B): Basic Research, 2017, 254, 1700014.                                                                     | 0.7 | 9         |
| 60 | On the Mathematical Modelling of Adaptive Darrieus Wind Turbine. Journal of Power and Energy<br>Engineering, 2017, 05, 133-158.                                                            | 0.3 | 4         |
| 61 | Wind Tunnel Validation of Double Multiple Streamtube Model for Vertical Axis Wind Turbine. Smart<br>Grid and Renewable Energy, 2017, 08, 412-424.                                          | 0.7 | 8         |
| 62 | Performance Assessment of Darrieus Turbine with Modified Trailing Edge Airfoil for Low Wind<br>Speeds. Smart Grid and Renewable Energy, 2017, 08, 425-439.                                 | 0.7 | 11        |
| 63 | A 3D auxetic material based on intersecting double arrowheads. Physica Status Solidi (B): Basic<br>Research, 2016, 253, 1252-1260.                                                         | 0.7 | 65        |
| 64 | Combined Effect of Load Waviness and Auxeticity on the Shear Deformation in a Class of Rectangular<br>Plates. IOP Conference Series: Materials Science and Engineering, 2016, 157, 012011. | 0.3 | 1         |
| 65 | Large Deflection of Circular Auxetic Membranes Under Uniform Load. Journal of Engineering<br>Materials and Technology, Transactions of the ASME, 2016, 138, .                              | 0.8 | 21        |
| 66 | Refined shear correction factor for very thick simply supported and uniformly loaded isosceles right triangular auxetic plates. Smart Materials and Structures, 2016, 25, 054001.          | 1.8 | 9         |
| 67 | Longitudinal wave motion in width-constrained auxetic plates. Smart Materials and Structures, 2016, 25, 054008.                                                                            | 1.8 | 10        |
| 68 | Dynamic behaviour of auxetic gradient composite hexagonal honeycombs. Composite Structures, 2016,<br>149, 114-124.                                                                         | 3.1 | 154       |
| 69 | Simply-Supported Elliptical Auxetic Plates. Journal of Mechanics, 2016, 32, 413-419.                                                                                                       | 0.7 | 15        |
| 70 | Plane Waves of Dilatation in Auxetic Bulk Solids. Materials Science Forum, 2016, 866, 206-210.                                                                                             | 0.3 | 4         |
| 71 | A 3D auxetic material based on intersecting double arrowheads (Phys. Status Solidi B 7/2016). Physica<br>Status Solidi (B): Basic Research, 2016, 253, 1452-1452.                          | 0.7 | 2         |
| 72 | Bending Stresses in Triangular Auxetic Plates. Journal of Engineering Materials and Technology,<br>Transactions of the ASME, 2016, 138, .                                                  | 0.8 | 13        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Higher-order shear deformation of very thick simply supported equilateral triangular plates under uniform load. Mechanics Based Design of Structures and Machines, 2016, 44, 514-522.           | 3.4 | 13        |
| 74 | Effect of longitudinal stress on wave propagation in width onstrained elastic plates with arbitrary<br>Poisson's ratio. Physica Status Solidi (B): Basic Research, 2015, 252, 1615-1619.        | 0.7 | 20        |
| 75 | Elastic stability analysis of auxetic columns using thirdâ€order shear deformation theory. Physica<br>Status Solidi (B): Basic Research, 2015, 252, 1575-1579.                                  | 0.7 | 7         |
| 76 | Effect of nodule shape for modeling of auxetic microporous polymers. MATEC Web of Conferences, 2015, 34, 01002.                                                                                 | 0.1 | 1         |
| 77 | Auxetic Materials and Structures. Engineering Materials, 2015, , .                                                                                                                              | 0.3 | 243       |
| 78 | Simple Semi-auxetic Solids. Engineering Materials, 2015, , 475-532.                                                                                                                             | 0.3 | 0         |
| 79 | Wave Transmission and Reflection Involving Auxetic Solids. Engineering Materials, 2015, , 385-404.                                                                                              | 0.3 | 0         |
| 80 | Wave Propagation in Auxetic Solids. Engineering Materials, 2015, , 367-383.                                                                                                                     | 0.3 | 1         |
| 81 | Vibration of Auxetic Solids. Engineering Materials, 2015, , 345-365.                                                                                                                            | 0.3 | 0         |
| 82 | Auxetic Beams. Engineering Materials, 2015, , 201-215.                                                                                                                                          | 0.3 | 0         |
| 83 | Micromechanical Models for Auxetic Materials. Engineering Materials, 2015, , 45-105.                                                                                                            | 0.3 | 1         |
| 84 | Elasticity of Auxetic Solids. Engineering Materials, 2015, , 107-145.                                                                                                                           | 0.3 | 0         |
| 85 | Longitudinal Wave Velocity in Auxetic Rods. Journal of Engineering Materials and Technology,<br>Transactions of the ASME, 2015, 137, .                                                          | 0.8 | 18        |
| 86 | Shear deformation in beams with negative Poisson's ratio. Proceedings of the Institution of<br>Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2015, 229, 447-454. | 0.7 | 10        |
| 87 | Thermal Stresses in Auxetic Plates and Shells. Mechanics of Advanced Materials and Structures, 2015, 22, 205-212.                                                                               | 1.5 | 36        |
| 88 | Buckling and Vibration of Circular Auxetic Plates. Journal of Engineering Materials and Technology,<br>Transactions of the ASME, 2014, 136, .                                                   | 0.8 | 35        |
| 89 | Shear Deformation in Rectangular Auxetic Plates. Journal of Engineering Materials and Technology, Transactions of the ASME, 2014, 136, .                                                        | 0.8 | 17        |
| 90 | Wave motion in auxetic solids. Physica Status Solidi (B): Basic Research, 2014, 251, 388-396.                                                                                                   | 0.7 | 22        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Semi-auxetic yarns. Physica Status Solidi (B): Basic Research, 2014, 251, 273-280.                                                                                                                      | 0.7 | 37        |
| 92  | FLEXURAL RIGIDITY OF THIN AUXETIC PLATES. International Journal of Applied Mechanics, 2014, 06, 1450012.                                                                                                | 1.3 | 16        |
| 93  | Elastic stability of thick auxetic plates. Smart Materials and Structures, 2014, 23, 045004.                                                                                                            | 1.8 | 19        |
| 94  | Experimental studies on the impact properties of auxetic materials. Physica Status Solidi (B): Basic Research, 2014, 251, 307-313.                                                                      | 0.7 | 60        |
| 95  | Vibration of thick auxetic plates. Mechanics Research Communications, 2014, 61, 60-66.                                                                                                                  | 1.0 | 30        |
| 96  | Optimal Poisson's ratios for laterally loaded rectangular plates. Proceedings of the Institution of<br>Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2013, 227, 111-123. | 0.7 | 7         |
| 97  | Thermal Stresses in Thin Auxetic Plates. Journal of Thermal Stresses, 2013, 36, 1131-1140.                                                                                                              | 1.1 | 24        |
| 98  | Circular Auxetic Plates. Journal of Mechanics, 2013, 29, 121-133.                                                                                                                                       | 0.7 | 30        |
| 99  | Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete<br>Wavelet Transform. Knowledge-Based Systems, 2013, 37, 274-282.                                     | 4.0 | 192       |
| 100 | Stress wave transmission and reflection through auxetic solids. Smart Materials and Structures, 2013, 22, 084002.                                                                                       | 1.8 | 15        |
| 101 | <i>A Special Section on</i> Healthcare Informatics. Journal of Medical Imaging and Health Informatics, 2013, 3, 393-394.                                                                                | 0.2 | 1         |
| 102 | Automated Detection of Premature Ventricular Contraction Using Recurrence Quantification<br>Analysis on Heart Rate Signals. Journal of Medical Imaging and Health Informatics, 2013, 3, 462-469.        | 0.2 | 5         |
| 103 | <l>A Special Section on</l> Healthcare Informatics (Part III). Journal of Medical Imaging and<br>Health Informatics, 2013, 3, 566-567.                                                                  | 0.2 | 3         |
| 104 | A Systems Approach to Cardiac Health Diagnosis. Journal of Medical Imaging and Health Informatics, 2013, 3, 261-267.                                                                                    | 0.2 | 11        |
| 105 | <i>A Special Section on</i> Healthcare Informatics. Journal of Medical Imaging and Health<br>Informatics, 2013, 3, 268-269.                                                                             | 0.2 | 3         |
| 106 | Spherical Auxetic Shells. Advanced Materials Research, 2013, 804, 146-150.                                                                                                                              | 0.3 | 8         |
| 107 | Shear deformation in thick auxetic plates. Smart Materials and Structures, 2013, 22, 084001.                                                                                                            | 1.8 | 24        |
| 108 | Automated Detection of Diabetes by Means of Higher Order Spectral Features Obtained from Heart<br>Rate Signals. Journal of Medical Imaging and Health Informatics, 2013, 3, 440-447.                    | 0.2 | 21        |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Negative thermal expansion in transversely isotropic space frame trusses. Physica Status Solidi (B):<br>Basic Research, 2013, 250, 2062-2069.                              | 0.7 | 22        |
| 110 | Review of Data Mining Methodologies for Healthcare Applications. Journal of Medical Imaging and Health Informatics, 2013, 3, 288-293.                                      | 0.2 | 3         |
| 111 | ANALYSIS OF AUXETIC BEAMS AS RESONANT FREQUENCY BIOSENSORS. Journal of Mechanics in Medicine and Biology, 2012, 12, 1240027.                                               | 0.3 | 3         |
| 112 | AUTOMATED IDENTIFICATION OF EPILEPTIC AND ALCOHOLIC EEG SIGNALS USING RECURRENCE QUANTIFICATION ANALYSIS. Journal of Mechanics in Medicine and Biology, 2012, 12, 1240028. | 0.3 | 11        |
| 113 | COMPREHENSIVE ANALYSIS OF NORMAL AND DIABETIC HEART RATE SIGNALS: A REVIEW. Journal of Mechanics in Medicine and Biology, 2012, 12, 1240033.                               | 0.3 | 11        |
| 114 | Mixed auxeticity of auxetic sandwich structures. Physica Status Solidi (B): Basic Research, 2012, 249, 1366-1372.                                                          | 0.7 | 32        |
| 115 | A power series potential energy function with adjustable index. Journal of Mathematical Chemistry, 2012, 50, 1091-1099.                                                    | 0.7 | 0         |
| 116 | A survey and comparative study on the instruments for glaucoma detection. Medical Engineering and Physics, 2012, 34, 129-139.                                              | 0.8 | 43        |
| 117 | Negative thermal expansion structures constructed from positive thermal expansion trusses. Journal of Materials Science, 2012, 47, 368-373.                                | 1.7 | 41        |
| 118 | Review of Data Mining Methods with Applications for Rehabilitation Engineering, Human Factors, and<br>Diagnostics. , 2012, , 447-460.                                      |     | 2         |
| 119 | Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters.<br>Physiological Measurement, 2011, 32, 287-303.                             | 1.2 | 77        |
| 120 | UNITED ATOM MODEL APPROACH FOR DESCRIBING C60 INTERACTION ENERGY IN MOLECULAR MECHANICS.<br>Journal of Theoretical and Computational Chemistry, 2011, 10, 423-434.         | 1.8 | 2         |
| 121 | Modeling and Simulation of Polymeric Nanocomposite Processing. Advanced Structured Materials, 2011, , 119-134.                                                             | 0.3 | 0         |
| 122 | Torsion of semi-auxetic rods. Journal of Materials Science, 2011, 46, 6904-6909.                                                                                           | 1.7 | 15        |
| 123 | Application of extended-Rydberg parameters in general Morse potential functions. Journal of<br>Mathematical Chemistry, 2011, 49, 1086-1091.                                | 0.7 | 8         |
| 124 | Split series potential energy function. Journal of Mathematical Chemistry, 2011, 49, 1180-1191.                                                                            | 0.7 | 2         |
| 125 | Coefficient of thermal expansion of stacked auxetic and negative thermal expansion laminates. Physica<br>Status Solidi (B): Basic Research, 2011, 248, 140-147.            | 0.7 | 35        |
| 126 | Counterintuitive modulus from semiâ€auxetic laminates. Physica Status Solidi (B): Basic Research, 2011,<br>248, 60-65.                                                     | 0.7 | 32        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Size-Dependency Consideration of Montmorillonite-Reinforced Nylon-6 Via Interfacial Stiffness.<br>Journal of Thermoplastic Composite Materials, 2011, 24, 601-611.                                                               | 2.6 | 5         |
| 128 | Computer-Based Identification of Diabetic Maculopathy Stages Using Fundus Images. , 2011, , 377-399.                                                                                                                             |     | 7         |
| 129 | Performance Evaluation of Auxetic Molecular Sieves with Re-Entrant Structures. Journal of<br>Biomedical Nanotechnology, 2010, 6, 718-724.                                                                                        | 0.5 | 30        |
| 130 | Application of Kihara parameters in conventional molecular force fields. Journal of Mathematical Chemistry, 2010, 48, 363-369.                                                                                                   | 0.7 | 6         |
| 131 | Modification of Morse potential in conventional force fields for applying FPDP parameters. Journal of Mathematical Chemistry, 2010, 47, 984-989.                                                                                 | 0.7 | 8         |
| 132 | Identification of Cataract and Post-cataract Surgery Optical Images Using Artificial Intelligence<br>Techniques. Journal of Medical Systems, 2010, 34, 619-628.                                                                  | 2.2 | 27        |
| 133 | Geometrical Correction to the Elastic Stiffness of Particulate Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 94-104.                                                                                      | 1.6 | 1         |
| 134 | Correction Factors for the Analytical Transverse Stiffness of Unidirectional Fiber Composites.<br>Journal of Thermoplastic Composite Materials, 2010, 23, 389-399.                                                               | 2.6 | 0         |
| 135 | In-Plane Stiffness of Semiauxetic Laminates. Journal of Engineering Mechanics - ASCE, 2010, 136, 1176-1180.                                                                                                                      | 1.6 | 41        |
| 136 | Preliminary assessment of a multifunctional potential energy function. Molecular Physics, 2010, 108, 1589-1597.                                                                                                                  | 0.8 | 6         |
| 137 | Automated identification of diabetes type-2 subjects with and without neuropathy using eigenvalues.<br>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine,<br>2010, 224, 43-52.  | 1.0 | 8         |
| 138 | Longitudinal Modulus of Semi-auxetic Unidirectional Fiber Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 1441-1445.                                                                                        | 1.6 | 15        |
| 139 | Alignment of Buckingham Parameters to Generalized Lennard-Jones Potential Functions. Zeitschrift<br>Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 200-204.                                              | 0.7 | 17        |
| 140 | Obtaining the Varshni potential function using the 2-body Kaxiras-Pandey parameters. Journal of the<br>Serbian Chemical Society, 2009, 74, 1423-1428.                                                                            | 0.4 | 5         |
| 141 | Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.<br>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine,<br>2009, 223, 653-662. | 1.0 | 7         |
| 142 | Coefficient interrelatedness among polynomial potential functions of diatomic molecules. Journal of<br>Mathematical Chemistry, 2009, 45, 953-961.                                                                                | 0.7 | 0         |
| 143 | Approximation of the Dymond-Rigby-Smith potential function using the Lennard-Jones form. Journal of Mathematical Chemistry, 2009, 46, 569-575.                                                                                   | 0.7 | 1         |
| 144 | Automated Diagnosis of Glaucoma Using Digital Fundus Images. Journal of Medical Systems, 2009, 33, 337-346.                                                                                                                      | 2.2 | 241       |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Out-of-plane modulus of semi-auxetic laminates. European Journal of Mechanics, A/Solids, 2009, 28, 752-756.                                                                                           | 2.1 | 45        |
| 146 | An hexagonal array of fourfold interconnected hexagonal nodules for modeling auxetic<br>microporous polymers: a comparison of 2D and 3D models. Journal of Materials Science, 2009, 44,<br>4491-4494. | 1.7 | 10        |
| 147 | Relations between Varshni and Morse potential energy parameters. Open Physics, 2009, 7, .                                                                                                             | 0.8 | 3         |
| 148 | AUTOMATIC IDENTIFICATION OF EPILEPTIC EEG SIGNALS USING NONLINEAR PARAMETERS. Journal of Mechanics in Medicine and Biology, 2009, 09, 539-553.                                                        | 0.3 | 101       |
| 149 | Potential energy function based on the narcissus constant, its square and its cube. Journal of<br>Mathematical Chemistry, 2008, 43, 304-313.                                                          | 0.7 | 1         |
| 150 | Connection between the Ogilvie and the Murrell–Sorbie potential energy functions. Journal of<br>Mathematical Chemistry, 2008, 43, 1345-1354.                                                          | 0.7 | 1         |
| 151 | Improved long range relationship between parameters of the Morse and Rydberg potential functions.<br>Journal of Mathematical Chemistry, 2008, 43, 1573-1577.                                          | 0.7 | 3         |
| 152 | Obtaining the Morse parameter for large bond-stretching using Murrell-Sorbie parameters. Journal of<br>Molecular Modeling, 2008, 14, 103-108.                                                         | 0.8 | 4         |
| 153 | Calculation of Rydberg potential energy curve from Murrell–Sorbie parameters. Molecular Physics, 2008, 106, 753-758.                                                                                  | 0.8 | 5         |
| 154 | UTILIZATION OF GENERALIZED MORSE PARAMETERS FOR CONVENTIONAL MORSE FUNCTIONS USED IN MOLECULAR MECHANICS. Journal of Theoretical and Computational Chemistry, 2008, 07, 1085-1091.                    | 1.8 | 1         |
| 155 | Extraction of Dunham Coefficients from Murrell-Sorbie Parameters. Zeitschrift Fur Naturforschung -<br>Section A Journal of Physical Sciences, 2008, 63, 1-6.                                          | 0.7 | 2         |
| 156 | 92.12 Two infinite nested radical constants. Mathematical Gazette, 2008, 92, 96-97.                                                                                                                   | 0.0 | 0         |
| 157 | Alternative scaling factor between Lennard-Jones and Exponential-6 potential energy functions.<br>Molecular Simulation, 2007, 33, 1029-1032.                                                          | 0.9 | 9         |
| 158 | Long range relationship between Morse and Lennard–Jones potential energy functions. Molecular<br>Physics, 2007, 105, 1013-1018.                                                                       | 0.8 | 11        |
| 159 | On simultaneous positive and negative Poisson's ratio laminates. Physica Status Solidi (B): Basic<br>Research, 2007, 244, 910-918.                                                                    | 0.7 | 29        |
| 160 | Kinematical studies on rotation-based semi-auxetics. Journal of Materials Science, 2007, 42, 7690-7695.                                                                                               | 1.7 | 4         |
| 161 | Application of Extended-Rydberg Parameters for Extracting the 2-Body Portion of Kaxiras–Pandey Function. Journal of Mathematical Chemistry, 2007, 41, 135-142.                                        | 0.7 | 4         |
| 162 | On the Applicability of Mathematical Constants and Sequences in Intermolecular Potential Energy Functions. Journal of Mathematical Chemistry, 2007, 41, 381-391.                                      | 0.7 | 3         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Combination of pi and Golden Ratio in Lennard–Jones-Type and Morse-Type Potential Energy Functions.<br>Journal of Mathematical Chemistry, 2007, 42, 93-101.                                             | 0.7 | 2         |
| 164 | Obtaining Simons–Parr–Finlan coefficients using Murrell–Sorbie parameters. Chemical Physics, 2007,<br>331, 270-274.                                                                                     | 0.9 | 17        |
| 165 | Relationship and discrepancies between the Extended-Rydberg and the Generalized Buckingham potential energy functions. Journal of the Serbian Chemical Society, 2007, 72, 159-164.                      | 0.4 | 5         |
| 166 | Connection between parameters of the Murrell–Sorbie and Fayyazuddin potentials. Molecular<br>Physics, 2006, 104, 1827-1831.                                                                             | 0.8 | 15        |
| 167 | Modified Halpin-Tsai Equation for Clay-Reinforced Polymer Nanofiber. Mechanics of Advanced<br>Materials and Structures, 2006, 13, 77-81.                                                                | 1.5 | 28        |
| 168 | Application of binomial coefficients in representing central difference solution to a class of PDE arising in chemistry. Journal of Mathematical Chemistry, 2006, 39, 177-186.                          | 0.7 | 2         |
| 169 | Refined relationship between extended Rydberg and generalized Morse functions for a special class of diatoms. European Physical Journal D, 2006, 56, 149-156.                                           | 0.4 | 0         |
| 170 | A Conceptual Review of Nanosensors. Zeitschrift Fur Naturforschung - Section A Journal of Physical<br>Sciences, 2006, 61, 402-412.                                                                      | 0.7 | 35        |
| 171 | Next-Generation Applications for Polymeric Nanofibres. , 2005, , 137-147.                                                                                                                               |     | 2         |
| 172 | A functionally flexible interatomic energy function based on classical potentials. Chemical Physics, 2005, 320, 54-58.                                                                                  | 0.9 | 26        |
| 173 | Polynomial Forms of Typical Interatomic Potential Functions. Journal of Mathematical Chemistry, 2005, 38, 495-501.                                                                                      | 0.7 | 8         |
| 174 | Correlation among parameters of the extended-Rydberg potential energy function. Journal of<br>Mathematical Chemistry, 2005, 38, 195-201.                                                                | 0.7 | 8         |
| 175 | Size-dependency of nano-scale inclusions. Journal of Materials Science, 2005, 40, 3841-3842.                                                                                                            | 1.7 | 6         |
| 176 | Anisotropic and negative thermal expansion behavior in a cellular microstructure. Journal of<br>Materials Science, 2005, 40, 3275-3277.                                                                 | 1.7 | 56        |
| 177 | Two-body relationship between the Pearson-Takai-Halicioglu-Tiller and the Biswas-Hamann potential functions. Brazilian Journal of Physics, 2005, 35, 641-644.                                           | 0.7 | 5         |
| 178 | A Relationship Between the 2-body Energy of Kaxiras–Pandey and Pearson–Takai–Halicioglu–Tiller<br>Potential Functions. Physica Scripta, 2004, 70, 347-348.                                              | 1.2 | 22        |
| 179 | Relationship between the 2-body Energy of the Biswas-Hamann and the Murrell-Mottram Potential<br>Functions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2004, 59, 116-118. | 0.7 | 9         |
| 180 | Relationship between the 2-body Parameters of the Biswas-Hamann and the Bauer-Maysenholder-Seeger<br>Potential Functions. European Physical Journal D, 2004, 54, 553-559.                               | 0.4 | 11        |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Connection between the 2-body Energy of the Kaxiras-Pandey and the Biswas-Hamann Potentials.<br>European Physical Journal D, 2004, 54, 947-963.                                            | 0.4 | 11        |
| 182 | Elastic properties of a Poisson–Shear material. Journal of Materials Science, 2004, 39, 4965-4969.                                                                                         | 1.7 | 16        |
| 183 | Application of Maclaurin Series in Relating Interatomic Potential Functions: A Review. Journal of<br>Mathematical Chemistry, 2004, 36, 147-160.                                            | 0.7 | 15        |
| 184 | Relationship Between Morse and Murrell-Mottram Potentials at Long Range. Journal of Mathematical<br>Chemistry, 2004, 36, 139-145.                                                          | 0.7 | 11        |
| 185 | Connection Among Classical Interatomic Potential Functions. Journal of Mathematical Chemistry, 2004, 36, 261-269.                                                                          | 0.7 | 18        |
| 186 | Relationship and Discrepancies Among Typical Interatomic Potential Functions. Chinese Physics<br>Letters, 2004, 21, 2167-2170.                                                             | 1.3 | 16        |
| 187 | Recent Advances In Tissue Engineering Applications Of Electrospun Nanofibers. Materials Technology, 2004, 19, 20-27.                                                                       | 1.5 | 14        |
| 188 | Mathematical Connections Between Bond-Stretching Potential Functions. Journal of Mathematical Chemistry, 2003, 33, 29-37.                                                                  | 0.7 | 15        |
| 189 | Scaling Function Between the Exponential-6 and the Generalized Lennard-Jones Potential Functions.<br>Journal of Mathematical Chemistry, 2003, 33, 279-285.                                 | 0.7 | 16        |
| 190 | Spring Constant Analogy for Estimating Stiffness of a Single Polyethylene Molecule. Journal of<br>Mathematical Chemistry, 2003, 34, 151-161.                                               | 0.7 | 5         |
| 191 | Elastic Properties of a Polyethylene Single-Molecule. Journal of Mathematical Chemistry, 2003, 34, 215-220.                                                                                | 0.7 | 2         |
| 192 | Exact Non-Linear Relationship Between Exponential-6 and Lennard-Jones (12-6) Potential Functions.<br>Journal of Mathematical Chemistry, 2003, 34, 221-225.                                 | 0.7 | 12        |
| 193 | Constitutive relationship of a material with unconventional Poisson's ratio. Journal of Materials<br>Science Letters, 2003, 22, 1783-1786.                                                 | 0.5 | 24        |
| 194 | A three-level hierarchical approach in modeling sheet thermoforming of knitted-fabric composites.<br>International Journal of Mechanical Sciences, 2003, 45, 1097-1117.                    | 3.6 | 7         |
| 195 | Simplified Model for the Influence of Inclusion Aspect Ratio on the Stiffness of Aligned Reinforced Composites. Journal of Reinforced Plastics and Composites, 2003, 22, 301-325.          | 1.6 | 6         |
| 196 | Simplified Transverse Young's Modulus of Aligned Ribbon-Reinforced Composites by the<br>Mechanics-of-Materials Approach. Journal of Reinforced Plastics and Composites, 2003, 22, 257-269. | 1.6 | 3         |
| 197 | The Relationship between Lennard-Jones (12-6) and Morse Potential Functions. Zeitschrift Fur<br>Naturforschung - Section A Journal of Physical Sciences, 2003, 58, 615-617.                | 0.7 | 46        |
| 198 | Elastic Stiffness of Three-Phase Composites by the Generalized Mechanics-of-Materials (GMM)<br>Approach. Journal of Thermoplastic Composite Materials, 2002, 15, 155-167.                  | 2.6 | 6         |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Modelling of composite sheet forming: a review. Composites Part A: Applied Science and Manufacturing, 2002, 33, 515-537.                                                                                         | 3.8 | 58        |
| 200 | Unified practical bounds for the thermal conductivity of composite materials. Materials Letters, 2002, 54, 152-157.                                                                                              | 1.3 | 19        |
| 201 | Analytical modelling for sheet thermoforming of knitted fabric reinforced PMC. Journal of Materials<br>Science, 2002, 37, 871-877.                                                                               | 1.7 | 5         |
| 202 | Material structure for attaining pure Poisson-shearing. Journal of Materials Science Letters, 2002, 21, 1595-1597.                                                                                               | 0.5 | 12        |
| 203 | A Note on Mathematical Relationships Among Bond-Torsion Force Fields. Journal of Mathematical Chemistry, 2002, 31, 421-428.                                                                                      | 0.7 | 12        |
| 204 | Functionally graded beam for attaining Poisson-curving. Journal of Materials Science Letters, 2002, 21, 1899-1901.                                                                                               | 0.5 | 64        |
| 205 | Mathematical Relationships Between Bond-Bending Force Fields. Journal of Mathematical Chemistry, 2002, 32, 249-256.                                                                                              | 0.7 | 13        |
| 206 | Sheet forming kinematics of curved-textile composites by the mapping scheme. Mechanics Research Communications, 2000, 27, 29-36.                                                                                 | 1.0 | 2         |
| 207 | Strain field of deep drawn knitted fabric reinforced thermoplastic composite sheets. Journal of<br>Materials Processing Technology, 2000, 97, 95-99.                                                             | 3.1 | 7         |
| 208 | Simultaneous stretch forming and deep drawing in axisymmetrical sheet forming. Journal of<br>Materials Processing Technology, 2000, 97, 82-87.                                                                   | 3.1 | 3         |
| 209 | Effect of textile geometry on axisymmetric stretch forming of knitted fabric composites. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2000, 214, 333-337. | 1.5 | 5         |
| 210 | Deep Drawing Simulation of Knitted Fabric Composites Considering Geometrical Non-Linearity. Science and Engineering of Composite Materials, 1999, 8, 113-122.                                                    | 0.6 | 5         |
| 211 | Sheet forming simulation of knitted fabric composites considering fabric reorientation. Mechanics Research Communications, 1999, 26, 209-215.                                                                    | 1.0 | 3         |
| 212 | Axisymmetric sheet forming of knitted fabric composite by combined stretch forming and deep drawing. Composites Part B: Engineering, 1999, 30, 495-502.                                                          | 5.9 | 20        |
| 213 | Optimization of the formability of knitted fabric composite sheet by means of combined deep drawing and stretch forming. Journal of Materials Processing Technology, 1999, 89-90, 99-103.                        | 3.1 | 21        |
| 214 | SIMULTANEOUS DEEP DRAWING AND STRETCH FORMING OF KNITTED FABRIC COMPOSITE SHEET.<br>Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 57-61.                                                  | 0.1 | 0         |
| 215 | Stress Concentration Factors in Auxetic Rods and Plates. Applied Mechanics and Materials, 0, 394, 134-139.                                                                                                       | 0.2 | 5         |
| 216 | Rotating Disks Made from Materials with Negative Poisson's Ratio. Advanced Materials Research, 0, 804, 347-352.                                                                                                  | 0.3 | 4         |

| #   | Article                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------|-----|-----------|
| 217 | Auxetic Plates on Auxetic Foundation. Advanced Materials Research, 0, 974, 398-401. | 0.3 | 12        |