
Junkal Garmendia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5956092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enteropathogenic and Enterohemorrhagic Escherichia coli Infections: Translocation,	2.2	363
2	TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton+. Cellular Microbiology, 2004, 6, 1167-1183.	2.1	261
3	SseL, a <i>Salmonella</i> deubiquitinase required for macrophage killing and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3502-3507.	7.1	208
4	Modeling Klebsiella pneumoniae Pathogenesis by Infection of the Wax Moth Galleria mellonella. Infection and Immunity, 2013, 81, 3552-3565.	2.2	167
5	The roles of SsrA–SsrB and OmpR–EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology (United Kingdom), 2003, 149, 2385-2396.	1.8	133
6	Role of Bacterial Surface Structures on the Interaction of Klebsiella pneumoniae with Phagocytes. PLoS ONE, 2013, 8, e56847.	2.5	119
7	<i>Klebsiella pneumoniae</i> survives within macrophages by avoiding delivery to lysosomes. Cellular Microbiology, 2015, 17, 1537-1560.	2.1	116
8	Nontypeable <i>Haemophilus influenzae</i> Clearance by Alveolar Macrophages Is Impaired by Exposure to Cigarette Smoke. Infection and Immunity, 2009, 77, 4232-4242.	2.2	115
9	Subversion of actin dynamics by EPEC and EHEC. Current Opinion in Microbiology, 2006, 9, 40-45.	5.1	102
10	<i>Klebsiella pneumoniae</i> Capsule Polysaccharide Impedes the Expression of β-Defensins by Airway Epithelial Cells. Infection and Immunity, 2010, 78, 1135-1146.	2.2	97
11	Deciphering tissue-induced <i>Klebsiella pneumoniae</i> lipid A structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6369-78.	7.1	97
12	Impact of cigarette smoke exposure on host-bacterial pathogen interactions. European Respiratory Journal, 2012, 39, 467-477.	6.7	81
13	Tracing explosives in soil with transcriptional regulators of <i>Pseudomonas putida</i> evolved for responding to nitrotoluenes. Microbial Biotechnology, 2008, 1, 236-246.	4.2	79
14	Evidence for a non-replicative intracellular stage of nontypable Haemophilus influenzae in epithelial cells. Microbiology (United Kingdom), 2011, 157, 234-250.	1.8	79
15	<i>Klebsiella pneumoniae</i> Increases the Levels of Toll-Like Receptors 2 and 4 in Human Airway Epithelial Cells. Infection and Immunity, 2009, 77, 714-724.	2.2	74
16	À la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Molecular Microbiology, 2008, 42, 47-59.	2.5	72
17	Distribution of tccP in Clinical Enterohemorrhagic and Enteropathogenic Escherichia coli Isolates. Journal of Clinical Microbiology, 2005, 43, 5715-5720.	3.9	68
18	Klebsiella pneumoniae Outer Membrane Protein A Is Required to Prevent the Activation of Airway Epithelial Cells. Journal of Biological Chemistry, 2011, 286, 9956-9967.	3.4	67

JUNKAL GARMENDIA

#	Article	IF	CITATIONS
19	Surveying biotransformations with <i>Ã la carte</i> genetic traps: translating dehydrochlorination of lindane (gammaâ€hexachlorocyclohexane) into <i>lacZ</i> â€based phenotypes. Environmental Microbiology, 2006, 8, 546-555.	3.8	65
20	Enteropathogenic Escherichia coli Type III Effectors EspG and EspG2 Disrupt the Microtubule Network of Intestinal Epithelial Cells. Infection and Immunity, 2005, 73, 4385-4390.	2.2	61
21	Klebsiella pneumoniae subverts the activation of inflammatory responses in a NOD1-dependent manner. Cellular Microbiology, 2011, 13, 135-153.	2.1	61
22	Role of Intimin-Tir Interactions and the Tir-Cytoskeleton Coupling Protein in the Colonization of Calves and Lambs by Escherichia coli O157:H7. Infection and Immunity, 2006, 74, 758-764.	2.2	58
23	Dissection of Host Cell Signal Transduction during Acinetobacter baumannii – Triggered Inflammatory Response. PLoS ONE, 2010, 5, e10033.	2.5	57
24	Identification of an Effector Specificity Subregion within the Aromatic-Responsive Regulators DmpR and XylR by DNA Shuffling. Journal of Bacteriology, 2000, 182, 3008-3016.	2.2	53
25	Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells. BMC Microbiology, 2009, 9, 156.	3.3	51
26	Relative Contributions of Lipooligosaccharide Inner and Outer Core Modifications to Nontypeable Haemophilus influenzae Pathogenesis. Infection and Immunity, 2013, 81, 4100-4111.	2.2	48
27	Characterization of TccP-mediated N-WASP activation during enterohaemorrhagic Escherichia coli infection. Cellular Microbiology, 2006, 8, 1444-1455.	2.1	47
28	<i>Klebsiella pneumoniae</i> targets an EGF receptor-dependent pathway to subvert inflammation. Cellular Microbiology, 2013, 15, 1212-1233.	2.1	46
29	Novel <i>bla</i> _{ROB-1} -Bearing Plasmid Conferring Resistance to β-Lactams in Haemophilus parasuis Isolates from Healthy Weaning Pigs. Applied and Environmental Microbiology, 2015, 81, 3255-3267.	3.1	45
30	Molecular Characterization of Fluoroquinolone Resistance in Nontypeable Haemophilus influenzae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2015, 59, 461-466.	3.2	41
31	Deciphering the action of aromatic effectors on the prokaryotic enhancer-binding protein XylR: a structural model of its N-terminal domain. Environmental Microbiology, 2002, 4, 29-41.	3.8	40
32	TccP2 of O157:H7 and Non-O157 Enterohemorrhagic Escherichia coli (EHEC): Challenging the Dogma of EHEC-Induced Actin Polymerization. Infection and Immunity, 2007, 75, 604-612.	2.2	40
33	Lipopolysaccharide-binding protein and CD14 are increased in the bronchoalveolar lavage fluid of smokers. European Respiratory Journal, 2008, 33, 273-281.	6.7	40
34	The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Molecular Microbiology, 2000, 38, 401-410.	2.5	39
35	Antagonistic Pleiotropy in the Bifunctional Surface Protein FadL (OmpP1) during Adaptation of Haemophilus influenzae to Chronic Lung Infection Associated with Chronic Obstructive Pulmonary Disease. MBio, 2018, 9, .	4.1	39
36	Distribution of genes involved in sialic acid utilization in strains of Haemophilus parasuis. Microbiology (United Kingdom), 2012, 158, 2117-2124.	1.8	35

#	Article	IF	CITATIONS
37	Host cell kinases, α5 and β1 integrins, and Rac1 signalling on the microtubule cytoskeleton are important for non-typable Haemophilus influenzae invasion of respiratory epithelial cells. Microbiology (United) Tj ETQq1	1 0.784314	4 rg ⊞⊺ /Over
38	Increased Biofilm Formation by Nontypeable Haemophilus influenzae Isolates from Patients with Invasive Disease or Otitis Media versus Strains Recovered from Cases of Respiratory Infections. Applied and Environmental Microbiology, 2014, 80, 7088-7095.	3.1	30
39	Characterization of Nontypable Haemophilus influenzae Isolates Recovered from Adult Patients with Underlying Chronic Lung Disease Reveals Genotypic and Phenotypic Traits Associated with Persistent Infection. PLoS ONE, 2014, 9, e97020.	2.5	29
40	Combined Bacteria Microarray and Quartz Crystal Microbalance Approach for Exploring Glycosignatures of NontypeableHaemophilus influenzaeand Recognition by Host Lectins. Analytical Chemistry, 2016, 88, 5950-5957.	6.5	29
41	TccP2-mediated subversion of actin dynamics by EPEC 2 – a distinct evolutionary lineage of enteropathogenic Escherichia coli. Microbiology (United Kingdom), 2007, 153, 1743-1755.	1.8	28
42	A novel category of enteropathogenic Escherichia coli simultaneously utilizes the Nck and TccP pathways to induce actin remodelling. Cellular Microbiology, 2006, 8, 999-1008.	2.1	27
43	Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Scientific Reports, 2017, 7, 12860.	3.3	27
44	Nontypable Haemophilus influenzae Displays a Prevalent Surface Structure Molecular Pattern in Clinical Isolates. PLoS ONE, 2011, 6, e21133.	2.5	22
45	Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens. Frontiers in Microbiology, 2017, 8, 276.	3.5	22
46	Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways. PLoS ONE, 2015, 10, e0123154.	2.5	21
47	Operon structure and gene expression of theespJ–tccPlocus of enterohaemorrhagicEscherichia coliO157:H7. FEMS Microbiology Letters, 2005, 247, 137-145.	1.8	20
48	Modulation of Haemophilus influenzae interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways. Scientific Reports, 2018, 8, 6872.	3.3	19
49	Lung Surfactant Lipids Provide Immune Protection Against Haemophilus influenzae Respiratory Infection. Frontiers in Immunology, 2019, 10, 458.	4.8	18
50	Genotypic and phenotypic diversity of the noncapsulated Haemophilus influenzae: adaptation and pathogenesis in the human airways. International Microbiology, 2012, 15, 159-72.	2.4	18
51	Function and distribution of EspG2, a type III secretion system effector of enteropathogenic Escherichia coli. Microbes and Infection, 2006, 8, 2220-2227.	1.9	17
52	Transformed Recombinant Enrichment Profiling Rapidly Identifies HMW1 as an Intracellular Invasion Locus in Haemophilus influenzae. PLoS Pathogens, 2016, 12, e1005576.	4.7	16
53	Moonlighting of <i>Haemophilus influenzae</i> heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence, 2019, 10, 315-333.	4.4	16
54	Relationship between Azithromycin Susceptibility and Administration Efficacy for Nontypeable Haemophilus influenzae Respiratory Infection. Antimicrobial Agents and Chemotherapy, 2015, 59, 2700-2712.	3.2	15

Junkal Garmendia

#	Article	IF	CITATIONS
55	Genome Expression Profiling-Based Identification and Administration Efficacy of Host-Directed Antimicrobial Drugs against Respiratory Infection by Nontypeable Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 2015, 59, 7581-7592.	3.2	15
56	<i>Haemophilus influenzae</i> Glucose Catabolism Leading to Production of the Immunometabolite Acetate Has a Key Contribution to the Host Airway–Pathogen Interplay. ACS Infectious Diseases, 2020, 6, 406-421.	3.8	15
57	Complete Genome Sequence of Haemophilus influenzae Strain 375 from the Middle Ear of a Pediatric Patient with Otitis Media. Genome Announcements, 2014, 2, .	0.8	14
58	Inactivation of the Thymidylate Synthase thyA in Non-typeable Haemophilus influenzae Modulates Antibiotic Resistance and Has a Strong Impact on Its Interplay with the Host Airways. Frontiers in Cellular and Infection Microbiology, 2017, 7, 266.	3.9	10
59	Differential recognition of Haemophilus influenzae whole bacterial cells and isolated lipooligosaccharides by galactose-specific lectins. Scientific Reports, 2018, 8, 16292.	3.3	10
60	Preclinical Evaluation of the Antimicrobial-Immunomodulatory Dual Action of Xenohormetic Molecules against Haemophilus influenzae Respiratory Infection. Biomolecules, 2019, 9, 891.	4.0	10
61	Bacterial Surface Glycans: Microarray and QCM Strategies for Glycophenotyping and Exploration of Recognition by Host Receptors. Methods in Enzymology, 2018, 598, 37-70.	1.0	8
62	Phase Variation in HMW1A Controls a Phenotypic Switch in Haemophilus influenzae Associated with Pathoadaptation during Persistent Infection. MBio, 2021, 12, e0078921.	4.1	8
63	Bacterial metabolism and pathogenesis intimate intertwining: time for metabolic modelling to come into action. Microbial Biotechnology, 2022, 15, 95-102.	4.2	8
64	Nontypeable <i>Haemophilus influenzae</i> P5 Binds Human C4b-Binding Protein, Promoting Serum Resistance. Journal of Immunology, 2021, 207, 1566-1577.	0.8	6
65	Learning from –omics strategies applied to uncover Haemophilus influenzae host-pathogen interactions: Current status and perspectives. Computational and Structural Biotechnology Journal, 2021, 19, 3042-3050.	4.1	5
66	Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures. Biomolecules, 2021, 11, 595.	4.0	4
67	Interrogation of Essentiality in the Reconstructed Haemophilus influenzae Metabolic Network Identifies Lipid Metabolism Antimicrobial Targets: Preclinical Evaluation of a FabH β-Ketoacyl-ACP Synthase Inhibitor. MSystems, 2022, 7, e0145921.	3.8	4
68	Development and multimodal characterization of an elastase-induced emphysema mouse disease model for the COPD frequent bacterial exacerbator phenotype. Virulence, 2021, 12, 1672-1688.	4.4	2
69	<i>Klebsiella pneumoniae</i> Capsule Polysaccharide Impedes the Expression of β-Defensins by Airway Epithelial Cells. Infection and Immunity, 2010, 78, 5352-5352.	2.2	0