Samuel Guieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5955601/publications.pdf

Version: 2024-02-01

394421 477307 46 919 19 29 citations h-index g-index papers 56 56 56 1049 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Straightforward synthesis of thiazolo[5,4- <i>c</i>)]isoquinolines from dithiooxamide and 2-halobenzaldehydes. New Journal of Chemistry, 2022, 46, 3602-3615.	2.8	3
2	Steroid–Quinoline Hybrids for Disruption and Reversion of Protein Aggregation Processes. ACS Medicinal Chemistry Letters, 2022, 13, 443-448.	2.8	8
3	Push-pulling induces the excited-state intramolecular proton transfer in 2′-aminochalcones. Dyes and Pigments, 2022, 202, 110275.	3.7	10
4	Difluoroborate complexes based on 2′-hydroxyphenones as solid-state fluorophores. Dyes and Pigments, 2021, 184, 108720.	3.7	11
5	Tetracyclic Thioxanthene Derivatives: Studies on Fluorescence and Antitumor Activity. Molecules, 2021, 26, 3315.	3.8	2
6	Benzimidazole-Based N,O Boron Complexes as Deep Blue Solid-State Fluorophores. Materials, 2021, 14, 4298.	2.9	9
7	Dependent excited state absorption and dynamic of \hat{I}^2 -BF2 substituted metalloporphyrins: The metal ion effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119911.	3.9	1
8	Photodynamic control of citrus crop diseases. World Journal of Microbiology and Biotechnology, 2021, 37, 199.	3.6	2
9	Photodynamic treatment of melanoma cells using aza-dipyrromethenes as photosensitizers. Photochemical and Photobiological Sciences, 2020, 19, 885-891.	2.9	2
10	Site-Selective Modification of a Porpholactoneâ€"Selective Synthesis of 12,13- and 17,18-Dihydroporpholactones. Molecules, 2020, 25, 2642.	3.8	4
11	Unsymmetrical 2,4,6â€Triarylpyridines as Versatile Scaffolds for Deepâ€Blue and Dualâ€Emission Fluorophores. ChemPhotoChem, 2020, 4, 5312-5317.	3.0	7
12	Synthesis and luminescence properties of analogues of the green fluorescent protein chromophore. Dyes and Pigments, 2020, 177, 108267.	3.7	4
13	1,2,4-Triphenylpyrroles: Synthesis, Structure and Luminescence Properties. Synlett, 2020, 31, 632-634.	1.8	9
14	Multicomponent Synthesis of Luminescent Iminoboronates. Molecules, 2020, 25, 6039.	3.8	4
15	Synthesis and Photophysical Characterization of 2′-Aminochalcones. Chemistry Proceedings, 2020, 3, .	0.1	О
16	Fluorescent Lightâ€up Probe for the Detection of Protein Aggregates. Chemistry - an Asian Journal, 2019, 14, 859-863.	3.3	10
17	Development of novel Cu(I) compounds with vitamin B1 derivative and their potential application as anticancer drugs. Inorganica Chimica Acta, 2019, 487, 287-294.	2.4	2
18	Aggregation-induced emission enhancement of chiral boranils. New Journal of Chemistry, 2018, 42, 18166-18171.	2.8	20

#	Article	IF	CITATIONS
19	Tunable Color of Aggregationâ€Induced Emission Enhancement in a Family of Hydrogenâ€Bonded Azines and Schiff Bases. Chemistry - A European Journal, 2018, 24, 17262-17267.	3.3	29
20	Porphyrin–boron diketonate dyads. New Journal of Chemistry, 2017, 41, 2186-2192.	2.8	10
21	Halogen-bonded dimers and ribbons from the self-assembly of 3-halobenzophenones. CrystEngComm, 2017, 19, 2202-2206.	2.6	6
22	Aggregation-induced emission enhancement in halochalcones. New Journal of Chemistry, 2016, 40, 8198-8201.	2.8	24
23	Sequential multicomponent synthesis of highly functionalized pyridin-2(1H)-one derivatives. ChemistrySelect, 2016, 1, 318-322.	1.5	4
24	The Rich Tautomeric Behavior of Campestarenes. Chemistry - A European Journal, 2016, 22, 17657-17672.	3.3	20
25	Efficient Synthesis of Highly Enantioenriched Δ1-Pyrrolines. Synlett, 2015, 26, 846-850.	1.8	5
26	Synthesis, Postâ€Modification and Fluorescence Properties of Boron Diketonate Complexes. European Journal of Organic Chemistry, 2015, 2015, 3423-3426.	2.4	31
27	Site-selective hexa-hetero-functionalization of $\hat{l}\pm$ -cyclodextrin an archetypical C6-symmetric concave cycle. Nature Communications, 2014, 5, 5354.	12.8	51
28	Synthesis of 2,6-diaryl-1,2-dihydropyridines through a 6Ï€-electrocyclization of N-sulfonylazatrienes. Tetrahedron Letters, 2014, 55, 6585-6588.	1.4	13
29	Luminescent bi-metallic fluoroborate derivatives of bulky salen ligands. New Journal of Chemistry, 2014, 38, 5411-5414.	2.8	20
30	î"1-pyrroline based boranyls: Synthesis, crystal structures and luminescent properties. Dyes and Pigments, 2014, 111, 16-20.	3.7	22
31	Crystallization-induced light-emission enhancement ofÂdiphenylmethane derivatives. Tetrahedron, 2013, 69, 9329-9334.	1.9	19
32	Supramolecular organization of bis(3-halo-4-dimethylaminobenzylidene)hydrazines. Journal of Molecular Structure, 2013, 1035, 1-5.	3.6	6
33	Synthesis, crystal structure, and luminescence of tetrakis(4-methoxyphenyl)methane. Tetrahedron Letters, 2013, 54, 2870-2873.	1.4	13
34	Synthesis of Unsymmetrical Methylenebisphenol Derivatives. Synlett, 2013, 24, 762-764.	1.8	21
35	Dimethyl 5,5′-methylenebis(2-hydroxybenzoate). Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1404-o1404.	0.2	1
36	Synthesis and Characterization of Linear and Macrocyclic Ligands with Multiple Hemisalen Pockets. Synthetic Communications, 2012, 42, 3177-3186.	2.1	2

#	Article	IF	CITATION
37	Stericallyâ€Limited Selfâ€Assembly of Pt ₄ Macrocycles into Discrete Nonâ€covalent Nanotubes: Porous Supramolecular Tetramers and Hexamers. Chemistry - A European Journal, 2012, 18, 13712-13721.	3.3	15
38	Campestarenes: novel shape-persistent Schiff basemacrocycles with 5-fold symmetry. Chemical Communications, 2011, 47, 1169-1171.	4.1	67
39	Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling. Chemical Communications, 2011, 47, 9206.	4.1	57
40	Synthesis and Electrochemical Study of an Original Copper(II)â€Capped Salen–Cyclodextrin Complex. European Journal of Inorganic Chemistry, 2010, 2010, 4720-4727.	2.0	21
41	Can Heteroâ€Polysubstituted Cyclodextrins be Considered as Inherently Chiral Concave Molecules?. Angewandte Chemie - International Edition, 2010, 49, 2314-2318.	13.8	42
42	Columnar Organization of Head-to-Tail Self-Assembled Pt ₄ Rings. Journal of the American Chemical Society, 2010, 132, 7668-7675.	13.7	62
43	Photocontrol of Singleâ€Chain DNA Conformation in Cellâ€Mimicking Microcompartments. ChemBioChem, 2008, 9, 1201-1206.	2.6	51
44	Regiospecific Tandem Azideâ€Reduction/Deprotection To Afford Versatile Amino Alcoholâ€Functionalized α― and βâ€Cyclodextrins. Angewandte Chemie - International Edition, 2008, 47, 7060-7063.	13.8	57
45	Multiple Homo- and Hetero-functionalizations of α-Cyclodextrin through Oriented Deprotections. Journal of Organic Chemistry, 2008, 73, 2819-2828.	3.2	67
46	gem-Difluoro-carbasugars, the cases of mannopyranose and galactopyranose. Carbohydrate Research, 2007, 342, 1689-1703.	2.3	24