Douglas W Houston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5955252/publications.pdf

Version: 2024-02-01

46 papers

3,021 citations

279798 23 h-index 233421 45 g-index

47 all docs

47 docs citations

47 times ranked

3285 citing authors

#	Article	IF	CITATIONS
1	Topologically correct central projections of tetrapod inner ear afferents require Fzd3. Scientific Reports, 2019, 9, 10298.	3.3	13
2	A single KH domain in Bicaudal-C links mRNA binding and translational repression functions to maternal development. Development (Cambridge), 2019, 146, .	2.5	11
3	Culture and Host Transfer of Xenopus Oocytes for Maternal mRNA Depletion and Genome Editing Experiments. Methods in Molecular Biology, 2019, 1920, 1-16.	0.9	2
4	Identification of $\langle i \rangle$ Isthmin $1 \langle i \rangle$ as a Novel Clefting and Craniofacial Patterning Gene in Humans. Genetics, 2018, 208, 283-296.	2.9	18
5	Oocyte Host-Transfer and Maternal mRNA Depletion Experiments in <i>Xenopus</i> . Cold Spring Harbor Protocols, 2018, 2018, pdb.prot096982.	0.3	10
6	Cell Polarity in Oocyte Development., 2018,, 1-29.		1
7	Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. Developmental Neurobiology, 2018, 78, 1064-1080.	3.0	15
8	Vertebrate Axial Patterning: From Egg to Asymmetry. Advances in Experimental Medicine and Biology, 2017, 953, 209-306.	1.6	27
9	Role of maternal Xenopus syntabulin in germ plasm aggregation and primordial germ cell specification. Developmental Biology, 2017, 432, 237-247.	2.0	10
10	RNA Localization in the Vertebrate Oocyte: Establishment of Oocyte Polarity and Localized mRNA Assemblages. Results and Problems in Cell Differentiation, 2017, 63, 189-208.	0.7	14
11	The \hat{I}^3 -Protocadherin-C3 isoform inhibits canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. Scientific Reports, 2016, 6, 31665.	3.3	34
12	Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538, 336-343.	27.8	849
13	A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators. Development (Cambridge), 2016, 143, 864-71.	2.5	17
14	Ear manipulations reveal a critical period for survival and dendritic development at the singleâ€cell level in <scp>M</scp> authner neurons. Developmental Neurobiology, 2015, 75, 1339-1351.	3.0	23
15	Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. Scientific Reports, 2015, 5, 8338.	3.3	24
16	The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation. Developmental Biology, 2015, 401, 249-263.	2.0	15
17	Regulation of Cell Polarity and RNA Localization in Vertebrate Oocytes. International Review of Cell and Molecular Biology, 2013, 306, 127-185.	3.2	46
18	Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Human Molecular Genetics, 2013, 22, 1097-1111.	2.9	29

#	Article	IF	Citations
19	Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. Developmental Biology, 2013, 382, 385-399.	2.0	4
20	Maternal Dead-End1 is required for vegetal cortical microtubule assembly during <i>Xenopus</i> axis specification. Development (Cambridge), 2013, 140, 2334-2344.	2.5	35
21	Interferon Regulatory Factor 6 Promotes Differentiation of the Periderm by Activating Expression of Grainyhead-Like 3. Journal of Investigative Dermatology, 2013, 133, 68-77.	0.7	114
22	Transplantation of Xenopus laevis Tissues to Determine the Ability of Motor Neurons to Acquire a Novel Target. PLoS ONE, 2013, 8, e55541.	2.5	25
23	Maternal mRNA Knock-down Studies: Antisense Experiments Using the Host-Transfer Technique in Xenopus laevis and Xenopus tropicalis. Methods in Molecular Biology, 2012, 917, 167-182.	0.9	24
24	Differential Role of Axin RGS Domain Function in Wnt Signaling during Anteroposterior Patterning and Maternal Axis Formation. PLoS ONE, 2012, 7, e44096.	2.5	15
25	Cortical rotation and messenger RNA localization in <i>Xenopus</i> axis formation. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 371-388.	5.9	38
26	Use of fully modified 2′â€Oâ€methyl antisense oligos for lossâ€ofâ€function studies in vertebrate embryos. Genesis, 2011, 49, 117-123.	1.6	15
27	Fertilization of Xenopus oocytes using the Host Transfer Method. Journal of Visualized Experiments, 2010, , .	0.3	11
28	Identification of germ plasmâ€associated transcripts by microarray analysis of <i>Xenopus</i> vegetal cortex RNA. Developmental Dynamics, 2010, 239, 1838-1848.	1.8	40
29	The use of antisense oligonucleotides in Xenopus oocytes. Methods, 2010, 51, 75-81.	3.8	28
30	Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Developmental Biology, 2009, 325, 249-262.	2.0	64
31	Vegetally localized <i>Xenopus trim36</i> regulates cortical rotation and dorsal axis formation. Development (Cambridge), 2009, 136, 3057-3065.	2.5	48
32	Maternal Tgif1 regulates <i>nodal</i> gene expression in <i>Xenopus</i> . Developmental Dynamics, 2008, 237, 2862-2873.	1.8	13
33	Calcium fluxes in dorsal forerunner cells antagonize \hat{l}^2 -catenin and alter left-right patterning. Development (Cambridge), 2008, 135, 75-84.	2.5	61
34	Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. Development (Cambridge), 2005, 132, 4845-4855.	2.5	39
35	The Xenopus LIM-homeodomain protein Xlim5 regulates the differential adhesion properties of early ectoderm cells. Development (Cambridge), 2003, 130, 2695-2704.	2.5	14
36	A novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor. Development (Cambridge), 2003, 130, 2199-2212.	2.5	84

#	Article	IF	CITATION
37	Cloning and expression of Xenopus Lrp5 and Lrp6 genes. Mechanisms of Development, 2002, 117, 337-342.	1.7	26
38	Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development (Cambridge), 2002, 129, 4015-4025.	2.5	82
39	<i>pygopus</i> encodes a nuclear protein essential for Wingless/Wnt signaling. Development (Cambridge), 2002, 129, 4089-4101.	2.5	155
40	Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development (Cambridge), 2002, 129, 4015-25.	2.5	44
41	pygopus Encodes a nuclear protein essential for wingless/Wnt signaling. Development (Cambridge), 2002, 129, 4089-101.	2.5	80
42	The Role of Maternal Axin in Patterning the Xenopus Embryo. Developmental Biology, 2001, 237, 183-201.	2.0	53
43	Germ plasm and molecular determinants of germ cell fate. Current Topics in Developmental Biology, 2000, 50, 155-IN2.	2.2	171
44	DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to eIF4A. Mechanisms of Development, 2000, 95, 291-295.	1.7	78
45	Xcat RNA is a translationally sequestered germ plasm component in Xenopus. Mechanisms of Development, 1999, 84, 75-88.	1.7	69
46	The Role of Maternal VegT in Establishing the Primary Germ Layers in Xenopus Embryos. Cell, 1998, 94, 515-524.	28.9	433