
Douglas W Houston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5955252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538, 336-343.	27.8	849
2	The Role of Maternal VegT in Establishing the Primary Germ Layers in Xenopus Embryos. Cell, 1998, 94, 515-524.	28.9	433
3	Germ plasm and molecular determinants of germ cell fate. Current Topics in Developmental Biology, 2000, 50, 155-IN2.	2.2	171
4	<i>pygopus</i> encodes a nuclear protein essential for Wingless/Wnt signaling. Development (Cambridge), 2002, 129, 4089-4101.	2.5	155
5	Interferon Regulatory Factor 6 Promotes Differentiation of the Periderm by Activating Expression of Grainyhead-Like 3. Journal of Investigative Dermatology, 2013, 133, 68-77.	0.7	114
6	A novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor. Development (Cambridge), 2003, 130, 2199-2212.	2.5	84
7	Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development (Cambridge), 2002, 129, 4015-4025.	2.5	82
8	pygopus Encodes a nuclear protein essential for wingless/Wnt signaling. Development (Cambridge), 2002, 129, 4089-101.	2.5	80
9	DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to elF4A. Mechanisms of Development, 2000, 95, 291-295.	1.7	78
10	Xcat RNA is a translationally sequestered germ plasm component in Xenopus. Mechanisms of Development, 1999, 84, 75-88.	1.7	69
11	Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Developmental Biology, 2009, 325, 249-262.	2.0	64
12	Calcium fluxes in dorsal forerunner cells antagonize Î ² -catenin and alter left-right patterning. Development (Cambridge), 2008, 135, 75-84.	2.5	61
13	The Role of Maternal Axin in Patterning the Xenopus Embryo. Developmental Biology, 2001, 237, 183-201.	2.0	53
14	Vegetally localized <i>Xenopus trim36</i> regulates cortical rotation and dorsal axis formation. Development (Cambridge), 2009, 136, 3057-3065.	2.5	48
15	Regulation of Cell Polarity and RNA Localization in Vertebrate Oocytes. International Review of Cell and Molecular Biology, 2013, 306, 127-185.	3.2	46
16	Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development (Cambridge), 2002, 129, 4015-25.	2.5	44
17	Identification of germ plasmâ€associated transcripts by microarray analysis of <i>Xenopus</i> vegetal cortex RNA. Developmental Dynamics, 2010, 239, 1838-1848.	1.8	40
18	Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. Development (Cambridge), 2005, 132, 4845-4855.	2.5	39

Douglas W Houston

#	Article	IF	CITATIONS
19	Cortical rotation and messenger RNA localization in <i>Xenopus</i> axis formation. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 371-388.	5.9	38
20	Maternal Dead-End1 is required for vegetal cortical microtubule assembly during <i>Xenopus</i> axis specification. Development (Cambridge), 2013, 140, 2334-2344.	2.5	35
21	The γ-Protocadherin-C3 isoform inhibits canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. Scientific Reports, 2016, 6, 31665.	3.3	34
22	Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Human Molecular Genetics, 2013, 22, 1097-1111.	2.9	29
23	The use of antisense oligonucleotides in Xenopus oocytes. Methods, 2010, 51, 75-81.	3.8	28
24	Vertebrate Axial Patterning: From Egg to Asymmetry. Advances in Experimental Medicine and Biology, 2017, 953, 209-306.	1.6	27
25	Cloning and expression of Xenopus Lrp5 and Lrp6 genes. Mechanisms of Development, 2002, 117, 337-342.	1.7	26
26	Transplantation of Xenopus laevis Tissues to Determine the Ability of Motor Neurons to Acquire a Novel Target. PLoS ONE, 2013, 8, e55541.	2.5	25
27	Maternal mRNA Knock-down Studies: Antisense Experiments Using the Host-Transfer Technique in Xenopus laevis and Xenopus tropicalis. Methods in Molecular Biology, 2012, 917, 167-182.	0.9	24
28	Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. Scientific Reports, 2015, 5, 8338.	3.3	24
29	Ear manipulations reveal a critical period for survival and dendritic development at the singleâ€cell level in <scp>M</scp> authner neurons. Developmental Neurobiology, 2015, 75, 1339-1351.	3.0	23
30	Identification of <i>Isthmin 1</i> as a Novel Clefting and Craniofacial Patterning Gene in Humans. Genetics, 2018, 208, 283-296.	2.9	18
31	A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators. Development (Cambridge), 2016, 143, 864-71.	2.5	17
32	Use of fully modified 2′â€Oâ€methyl antisense oligos for lossâ€ofâ€function studies in vertebrate embryos. Genesis, 2011, 49, 117-123.	1.6	15
33	Differential Role of Axin RGS Domain Function in Wnt Signaling during Anteroposterior Patterning and Maternal Axis Formation. PLoS ONE, 2012, 7, e44096.	2.5	15
34	The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation. Developmental Biology, 2015, 401, 249-263.	2.0	15
35	Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. Developmental Neurobiology, 2018, 78, 1064-1080.	3.0	15
36	The Xenopus LIM-homeodomain protein Xlim5 regulates the differential adhesion properties of early ectoderm cells. Development (Cambridge), 2003, 130, 2695-2704.	2.5	14

DOUGLAS W HOUSTON

1

#	Article	IF	CITATIONS
37	RNA Localization in the Vertebrate Oocyte: Establishment of Oocyte Polarity and Localized mRNA Assemblages. Results and Problems in Cell Differentiation, 2017, 63, 189-208.	0.7	14
38	Maternal Tgif1 regulates <i>nodal</i> gene expression in <i>Xenopus</i> . Developmental Dynamics, 2008, 237, 2862-2873.	1.8	13
39	Topologically correct central projections of tetrapod inner ear afferents require Fzd3. Scientific Reports, 2019, 9, 10298.	3.3	13
40	Fertilization of Xenopus oocytes using the Host Transfer Method. Journal of Visualized Experiments, 2010, , .	0.3	11
41	A single KH domain in Bicaudal-C links mRNA binding and translational repression functions to maternal development. Development (Cambridge), 2019, 146, .	2.5	11
42	Role of maternal Xenopus syntabulin in germ plasm aggregation and primordial germ cell specification. Developmental Biology, 2017, 432, 237-247.	2.0	10
43	Oocyte Host-Transfer and Maternal mRNA Depletion Experiments in <i>Xenopus</i> . Cold Spring Harbor Protocols, 2018, 2018, pdb.prot096982.	0.3	10
44	Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. Developmental Biology, 2013, 382, 385-399.	2.0	4
45	Culture and Host Transfer of Xenopus Oocytes for Maternal mRNA Depletion and Genome Editing Experiments. Methods in Molecular Biology, 2019, 1920, 1-16.	0.9	2

46 Cell Polarity in Oocyte Development. , 2018, , 1-29.