
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595443/publications.pdf Version: 2024-02-01

RDAD M POTTS

#	Article	IF	CITATIONS
1	Expansion of the rare <i>Eucalyptus risdonii</i> under climate change through hybridization with a closely related species despite hybrid inferiority. Annals of Botany, 2022, 129, 1-14.	2.9	11
2	Analysis of the transcriptome of the needles and bark of Pinus radiata induced by bark stripping and methyl jasmonate. BMC Genomics, 2022, 23, 52.	2.8	2
3	Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. Forests, 2022, 13, 575.	2.1	3
4	Genetic Variation in Flowering Traits of Tasmanian Leptospermum scoparium and Association with Provenance Home Site Climatic Factors. Plants, 2022, 11, 1029.	3.5	1
5	Patterns of genomic diversity and linkage disequilibrium across the disjunct range of the Australian forest tree Eucalyptus globulus. Tree Genetics and Genomes, 2022, 18, .	1.6	4
6	Leaf Economic and Hydraulic Traits Signal Disparate Climate Adaptation Patterns in Two Co-Occurring Woodland Eucalypts. Plants, 2022, 11, 1846.	3.5	6
7	Consistent community genetic effects in the context of strong environmental and temporal variation in Eucalyptus. Oecologia, 2021, 195, 367-382.	2.0	5
8	Genetic variation of microfibril angle and its relationship with solid wood and pulpwood traits in two progeny trials of Eucalyptus nitens in Tasmania. Holzforschung, 2021, 75, 689-701.	1.9	1
9	Handheld Laser Scanning Detects Spatiotemporal Differences in the Development of Structural Traits among Species in Restoration Plantings. Remote Sensing, 2021, 13, 1706.	4.0	6
10	R-based image analysis to quantify checking and shrinkage from wood wedges. European Journal of Wood and Wood Products, 2021, 79, 1269-1281.	2.9	1
11	Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Communications Biology, 2021, 4, 537.	4.4	21
12	Genome-wide association study of myrtle rust (Austropuccinia psidii) resistance in Eucalyptus obliqua (subgenus Eucalyptus). Tree Genetics and Genomes, 2021, 17, 1.	1.6	8
13	Modelling wood property variation among Tasmanian Eucalyptus nitens plantations. Forest Ecology and Management, 2021, 491, 119203.	3.2	8
14	Origins, Diversity and Naturalization of Eucalyptus globulus (Myrtaceae) in California. Forests, 2021, 12, 1129.	2.1	2
15	Chemical Traits that Predict Susceptibility of Pinus radiata to Marsupial Bark Stripping. Journal of Chemical Ecology, 2021, , 1.	1.8	3
16	Additive genetic variation in Pinus radiata bark chemistry and the chemical traits associated with variation in mammalian bark stripping. Heredity, 2021, 127, 498-509.	2.6	10
17	Directional Selection on Tree Seedling Traits Driven by Experimental Drought Differs Between Mesic and Dry Populations. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
18	Embedding genetics experiments in restoration to guide plant choice for a degraded landscape with a changing climate. Ecological Management and Restoration, 2021, 22, 92-105.	1.5	20

#	Article	IF	CITATIONS
19	Investigating constraints on direct seeding for native revegetation in the Tasmanian Midlands. Ecological Management and Restoration, 2021, 22, 106-117.	1.5	5
20	A decade of restoring a temperate woodland: Lessons learned and future directions. Ecological Management and Restoration, 2021, 22, 164-174.	1.5	4
21	Dry biomass and carbon sequestration in environmental plantings in the Midlands of Tasmania. Ecological Management and Restoration, 2021, 22, 61-64.	1.5	5
22	Genetic correlations among pulpwood and solid-wood selection traits in Eucalyptus globulus. New Forests, 2020, 51, 137-158.	1.7	10
23	Monitoring forest structure to guide adaptive management of forest restoration: a review of remote sensing approaches. New Forests, 2020, 51, 573-596.	1.7	86
24	Independent genetic control of drought resistance, recovery, and growth of <i>Eucalyptus globulus</i> seedlings. Plant, Cell and Environment, 2020, 43, 103-115.	5.7	10
25	Stability of species and provenance performance when translocated into different community assemblages. Restoration Ecology, 2020, 28, 447-458.	2.9	11
26	Population Divergence along a Genetic Line of Least Resistance in the Tree Species Eucalyptus globulus. Genes, 2020, 11, 1095.	2.4	19
27	Application of resistance drilling to genetic studies of growth, wood basic density and bark thickness in <i>Eucalyptus globulus</i> . Australian Forestry, 2020, 83, 172-179.	0.9	15
28	Quantitative Genetic Variation in Bark Stripping of Pinus radiata. Forests, 2020, 11, 1356.	2.1	11
29	From Drones to Phenotype: Using UAV-LiDAR to Detect Species and Provenance Variation in Tree Productivity and Structure. Remote Sensing, 2020, 12, 3184.	4.0	29
30	Radial variation in modulus of elasticity, microfibril angle and wood density of veneer logs from plantation-grown Eucalyptus nitens. Annals of Forest Science, 2020, 77, 1.	2.0	12
31	The effect of management operations on the demography of Eucalyptus globulus seedlings. Forest Ecology and Management, 2019, 453, 117630.	3.2	9
32	Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia. Tree Genetics and Genomes, 2019, 15, 1.	1.6	11
33	Life cycle expression of inbreeding depression in Eucalyptus regnans and inter-generational stability of its mixed mating system. Annals of Botany, 2019, 124, 179-187.	2.9	18
34	Geographical patterns of variation in susceptibility of Eucalyptus globulus and Eucalyptus obliqua to myrtle rust. Tree Genetics and Genomes, 2019, 15, 1.	1.6	6
35	Inbreeding depression and differential maladaptation shape the fitness trajectory of two co-occurring Eucalyptus species. Annals of Forest Science, 2019, 76, 1.	2.0	32
36	Temperature and Rainfall Are Separate Agents of Selection Shaping Population Differentiation in a Forest Tree. Forests, 2019, 10, 1145.	2.1	19

#	Article	IF	CITATIONS
37	Comparison of host susceptibilities to native and exotic pathogens provides evidence for pathogenâ€imposed selection in forest trees. New Phytologist, 2019, 221, 2261-2272.	7.3	19
38	Forest fire may disrupt plant–microbial feedbacks. Plant Ecology, 2018, 219, 497-504.	1.6	6
39	Soil fungi underlie a phylogenetic pattern in plant growth responses to nitrogen enrichment. Journal of Ecology, 2018, 106, 2161-2175.	4.0	8
40	Annotation of the Corymbia terpene synthase gene family shows broad conservation but dynamic evolution of physical clusters relative to Eucalyptus. Heredity, 2018, 121, 87-104.	2.6	17
41	Association of <i>Eucalyptus globulus</i> leaf anatomy with susceptibility to <i>Teratosphaeria</i> leaf disease. Forest Pathology, 2018, 48, e12395.	1.1	14
42	Phylogenetic trait conservatism predicts patterns of plantâ€soil feedback. Ecosphere, 2018, 9, e02409.	2.2	7
43	Evidence that divergent selection shapes a developmental cline in a forest tree species complex. Annals of Botany, 2018, 122, 181-194.	2.9	13
44	Application of the IML Resistograph to the infield assessment of basic density in plantation eucalypts. Australian Forestry, 2018, 81, 177-185.	0.9	38
45	Quantitative Trait Loci (QTLs) for Intumescence Severity in <i>Eucalyptus globulus</i> and Validation of QTL Detection Based on Phenotyping Using Open-Pollinated Families of a Mapping Population. Plant Disease, 2018, 102, 1566-1573.	1.4	7
46	Integrating climate change and habitat fragmentation to identify candidate seed sources for ecological restoration. Restoration Ecology, 2017, 25, 524-531.	2.9	26
47	A water availability gradient reveals the deficit level required to affect traits in potted juvenileEucalyptus globulus. Annals of Botany, 2017, 119, mcw266.	2.9	7
48	Independent lines of evidence of a genetic relationship between acoustic wave velocity and kraft pulp yield in Eucalyptus globulus. Annals of Forest Science, 2017, 74, 1.	2.0	11
49	Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment. Ecology, 2017, 98, 2120-2132.	3.2	16
50	Effects of Clear Polymer Film on Emergence and Survival of Direct Sown Native Vegetation. Land Degradation and Development, 2017, 28, 2137-2145.	3.9	2
51	Understanding the naturalization of Eucalyptus globulus in Portugal: a comparison with Australian plantations. European Journal of Forest Research, 2017, 136, 433-446.	2.5	19
52	Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement. BMC Genomics, 2017, 18, 397.	2.8	25
53	The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus. Journal of Chemical Ecology, 2017, 43, 532-542.	1.8	9
54	Genetic diversity and structure of the Australian flora. Diversity and Distributions, 2017, 23, 41-52.	4.1	56

#	Article	IF	CITATIONS
55	Genomic Scans across Three Eucalypts Suggest that Adaptation to Aridity is a Genome-Wide Phenomenon. Genome Biology and Evolution, 2017, 9, 253-265.	2.5	27
56	Evidence for adaptation and acclimation in a widespread eucalypt of semi-arid Australia. Biological Journal of the Linnean Society, 2017, 121, 484-500.	1.6	32
57	Genetic stability of physiological responses to defoliation in a eucalypt and altered chemical defence in regrowth foliage. Tree Physiology, 2017, 37, 220-235.	3.1	6
58	Genetic-based interactions among tree neighbors: identification of the most influential neighbors, and estimation of correlations among direct and indirect genetic effects for leaf disease and growth in Eucalyptus globulus. Heredity, 2017, 119, 125-135.	2.6	36
59	Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within <i>Eucalyptus</i> species. Tree Physiology, 2016, 36, tpv106.	3.1	24
60	Genome-wide variation in recombination rate in Eucalyptus. BMC Genomics, 2016, 17, 590.	2.8	24
61	Managing Australia's eucalypt gene pools: assessing the risk of exotic gene flow. Proceedings of the Royal Society of Victoria, 2016, 128, 25.	0.4	6
62	Postmating barriers to hybridization between an island's native eucalypts and an introduced congener. Tree Genetics and Genomes, 2016, 12, 1.	1.6	6
63	Genetic control of cuticular wax compounds in <i>Eucalyptus globulus</i> . New Phytologist, 2016, 209, 202-215.	7.3	23
64	Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii. Tree Genetics and Genomes, 2016, 12, 1.	1.6	50
65	Survival and recovery of Eucalyptus globulus seedlings from severe defoliation. Forest Ecology and Management, 2016, 379, 243-251.	3.2	12
66	On the persistence of reproductive barriers in <i>Eucalyptus</i> : the bridging of mechanical barriers to zygote formation by <i>F</i> ₁ hybrids is counteracted by intrinsic post-zygotic incompatibilities. Annals of Botany, 2016, 118, 431-444.	2.9	19
67	High density, genome-wide markers and intra-specific replication yield an unprecedented phylogenetic reconstruction of a globally significant, speciose lineage of Eucalyptus. Molecular Phylogenetics and Evolution, 2016, 105, 63-85.	2.7	29
68	Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species. Journal of Chemical Ecology, 2016, 42, 1086-1097.	1.8	26
69	Climate adaptation and ecological restoration in eucalypts. Proceedings of the Royal Society of Victoria, 2016, 128, 40.	0.4	37
70	Influence of site, storage and steaming on Eucalyptus nitens log-end splitting. Annals of Forest Science, 2016, 73, 257-266.	2.0	16
71	Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen. Forest Ecology and Management, 2016, 368, 183-193.	3.2	41
72	Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	233

BRAD M POTTS

#	Article	IF	CITATIONS
73	Evidence for local climate adaptation in early-life traits of Tasmanian populations of Eucalyptus pauciflora. Tree Genetics and Genomes, 2015, 11, 1.	1.6	35
74	Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species. Annals of Botany, 2015, 115, 159-170.	2.9	14
75	Genomic patterns of species diversity and divergence in <i>Eucalyptus</i> . New Phytologist, 2015, 206, 1378-1390.	7.3	20
76	Genetic control of Eucalyptus globulus seed germination. Annals of Forest Science, 2015, 72, 457-467.	2.0	9
77	Genetic control of Eucalyptus globulus harvest traits. Canadian Journal of Forest Research, 2015, 45, 615-624.	1.7	13
78	Factors affecting log traits and green rotary-peeled veneer recovery from temperate eucalypt plantations. Annals of Forest Science, 2015, 72, 357-365.	2.0	12
79	Genome-wide scans reveal cryptic population structure in a dry-adapted eucalypt. Tree Genetics and Genomes, 2015, 11, 1.	1.6	34
80	Direct and indirect effects of marsupial browsing on a foundation tree species. Oikos, 2015, 124, 515-524.	2.7	8
81	Patterns of Reproductive Isolation in <i>Eucalyptus—</i> A Phylogenetic Perspective. Molecular Biology and Evolution, 2015, 32, 1833-1846.	8.9	56
82	Heterosis May Result in Selection Favouring the Products of Long-Distance Pollen Dispersal in Eucalyptus. PLoS ONE, 2014, 9, e93811.	2.5	14
83	Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities. PLoS ONE, 2014, 9, e114132.	2.5	7
84	Assessing a Bayesian Approach for Detecting Exotic Hybrids between Plantation and Native Eucalypts. International Journal of Forestry Research, 2014, 2014, 1-13.	0.8	8
85	Acoustic Wave Velocity as a Selection Trait in Eucalyptus nitens. Forests, 2014, 5, 744-762.	2.1	21
86	Unravelling the evolutionary history of Eucalyptus cordata (Myrtaceae) using molecular markers. Australian Journal of Botany, 2014, 62, 114.	0.6	10
87	Genetic Correlations in Multi-Species Plant/Herbivore Interactions at Multiple Genetic Scales. Advances in Ecological Research, 2014, 50, 267-295.	2.7	6
88	Genetic divergence in forest trees: understanding the consequences of climate change. Functional Ecology, 2014, 28, 22-36.	3.6	105
89	Plasticity of functional traits varies clinally along a rainfall gradient in <i>Eucalyptus tricarpa</i> . Plant, Cell and Environment, 2014, 37, 1440-1451.	5.7	106
90	Variable patterns of inheritance of ecologically important plant secondary metabolites in an inter-specific eucalypt hybrid. Forest Ecology and Management, 2014, 318, 71-77.	3.2	5

#	Article	IF	CITATIONS
91	Genomeâ€wide scans detect adaptation to aridity in a widespread forest tree species. Molecular Ecology, 2014, 23, 2500-2513.	3.9	95
92	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	27.8	725
93	Genetic Control of Heterochrony in <i>Eucalyptus globulus</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1235-1245.	1.8	36
94	Molecular genetic diversity and population structure in Eucalyptus pauciflora subsp. pauciflora (Myrtaceae) on the island of Tasmania. Australian Journal of Botany, 2014, 62, 175.	0.6	21
95	Assessing the risk of exotic gene flow from Eucalyptus globulus plantations to native E. ovata forests. Forest Ecology and Management, 2014, 312, 193-202.	3.2	14
96	Effect of limited water availability on foliar plant secondary metabolites of two Eucalyptus species. Environmental and Experimental Botany, 2014, 105, 55-64.	4.2	58
97	Shifts in Species Interactions Due to the Evolution of Functional Differences between Endemics and Non-Endemics: An Endemic Syndrome Hypothesis. PLoS ONE, 2014, 9, e111190.	2.5	17
98	Genetic analysis of the near-infrared spectral phenome of a global Eucalyptus species. Tree Genetics and Genomes, 2013, 9, 943-959.	1.6	13
99	Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biological Invasions, 2013, 15, 2763-2781.	2.4	43
100	Multiple evolutionary processes drive the patterns of genetic differentiation in a forest tree species complex. Ecology and Evolution, 2013, 3, 1-17.	1.9	33
101	Stability of genetic effects across clonal and seedling populations of Eucalyptus globulus with common parentage. Forest Ecology and Management, 2013, 291, 427-435.	3.2	12
102	Genetic control of interactions among individuals: contrasting outcomes of indirect genetic effects arising from neighbour disease infection and competition in a forest tree. New Phytologist, 2013, 197, 631-641.	7.3	57
103	Stability of quantitative trait loci for growth and wood properties across multiple pedigrees and environments in E ucalyptus globulus. New Phytologist, 2013, 198, 1121-1134.	7.3	62
104	Assessing genetic variation to improve stem straightness in Eucalyptus globulus. Annals of Forest Science, 2013, 70, 461-470.	2.0	14
105	A latitudinal cline in disease resistance of a host tree. Heredity, 2013, 110, 372-379.	2.6	46
106	Effect of forest fragmentation and altitude on the mating system of Eucalyptus pauciflora (Myrtaceae). Australian Journal of Botany, 2013, 61, 622.	0.6	16
107	Chemical Variation in a Dominant Tree Species: Population Divergence, Selection and Genetic Stability across Environments. PLoS ONE, 2013, 8, e58416.	2.5	31
108	Determination of Eucalyptus Globulus Wood Extractives Content by near Infrared-Based Partial Least Squares Regression Models: Comparison between Extraction Procedures. Journal of Near Infrared Spectroscopy, 2012, 20, 275-285.	1.5	24

#	Article	IF	CITATIONS
109	Genetic variation in the susceptibility of Eucalyptus globulus to drought damage. Tree Genetics and Genomes, 2012, 8, 757-773.	1.6	54
110	Paternal and maternal effects on the response of seed germination to high temperatures in Eucalyptus globulus. Annals of Forest Science, 2012, 69, 673-679.	2.0	20
111	Genetic improvement for pulpwood and peeled veneer in Eucalyptus nitens. Canadian Journal of Forest Research, 2012, 42, 1724-1732.	1.7	14
112	Short-term responses of native rodents to aggregated retention in old growth wet Eucalyptus forests. Forest Ecology and Management, 2012, 267, 18-27.	3.2	8
113	A reference linkage map for Eucalyptus. BMC Genomics, 2012, 13, 240.	2.8	33
114	Natural selection for anti-herbivore plant secondary metabolites. , 2012, , 10-33.		5
115	Epistasis causes outbreeding depression in eucalypt hybrids. Tree Genetics and Genomes, 2012, 8, 249-265.	1.6	29
116	High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping. Tree Genetics and Genomes, 2012, 8, 339-352.	1.6	49
117	Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genetics and Genomes, 2012, 8, 463-508.	1.6	197
118	Mammalian herbivores reveal marked genetic divergence among populations of an endangered plant species. Oikos, 2012, 121, 268-276.	2.7	8
119	Stability of Plant Defensive Traits Among Populations in Two Eucalyptus Species Under Elevated Carbon Dioxide. Journal of Chemical Ecology, 2012, 38, 204-212.	1.8	32
120	The genetic variation in the timing of heteroblastic transition in Eucalyptus globulus is stable across environments. Australian Journal of Botany, 2011, 59, 170.	0.6	18
121	Field screening for genetic-based susceptibility to mammalian browsing. Forest Ecology and Management, 2011, 262, 1500-1506.	3.2	6
122	Molecular genetic variation in a widespread forest tree species Eucalyptus obliqua (Myrtaceae) on the island of Tasmania. Australian Journal of Botany, 2011, 59, 226.	0.6	32
123	Determination of the Syringyl/Guaiacyl Ratio of <i>Eucalyptus Globulus</i> Wood Lignin by near Infrared-Based Partial Least Squares Regression Models Using Analytical Pyrolysis as the Reference Method. Journal of Near Infrared Spectroscopy, 2011, 19, 343-348.	1.5	42
124	The effects of age and environment on the expression of inbreeding depression in Eucalyptus globulus. Heredity, 2011, 107, 50-60.	2.6	37
125	Repellent and stocking guards reduce mammal browsing in eucalypt plantations. New Forests, 2011, 42, 301-316.	1.7	8
126	Quantitative trait loci for foliar terpenes in a global eucalypt species. Tree Genetics and Genomes, 2011, 7, 485-498.	1.6	37

#	Article	IF	CITATIONS
127	Genetic control of flowering time in Eucalyptus globulus ssp. globulus. Tree Genetics and Genomes, 2011, 7, 1209-1218.	1.6	26
128	Genetic and environmental variation in wood properties of Acacia melanoxylon. Annals of Forest Science, 2011, 68, 1363-1373.	2.0	21
129	Genetic variation in traits affecting sawn timber recovery in plantation-grown Eucalyptus nitens. Annals of Forest Science, 2011, 68, 1187.	2.0	14
130	QTL analysis for growth and wood properties across multiple pedigrees and sites in Eucalyptus globulus. BMC Proceedings, 2011, 5, .	1.6	8
131	Expression of a FLOWERING LOCUS T homologue is temporally associated with annual flower bud initiation in Eucalyptus globulus subsp. globulus (Myrtaceae). Australian Journal of Botany, 2011, 59, 756.	0.6	9
132	Genetic and environmental variation in heartwood colour of Australian blackwood (Acacia) Tj ETQq0 0 0 rgBT /O	verlock 1(1.9) Tf ₇ 50 542 To
133	Genetic Variation in the Chemical Components of <i>Eucalyptus globulus</i> Wood. G3: Genes, Genomes, Genetics, 2011, 1, 151-159.	1.8	81
134	Genetic correlations between pulpwood and solid-wood selection and objective traits in Eucalyptus globulus. Annals of Forest Science, 2010, 67, 511-511.	2.0	11
135	Effects of inbreeding on population mean performance and observational variances in Eucalyptus globulus. Annals of Forest Science, 2010, 67, 605-605.	2.0	31
136	The impact of flower density and irrigation on capsule and seed set in Eucalyptus globulus seed orchards. New Forests, 2010, 39, 117-127.	1.7	5
137	Genetic control in the survival, growth and form of Acacia melanoxylon. New Forests, 2010, 39, 139-156.	1.7	8
138	Age trends in genetic parameters for growth and wood density in Eucalyptus globulus. Tree Genetics and Genomes, 2010, 6, 179-193.	1.6	69
139	Stiffness and checking of Eucalyptus nitens sawn boards: genetic variation and potential for genetic improvement. Tree Genetics and Genomes, 2010, 6, 757-765.	1.6	48
140	Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Molecular Ecology, 2010, 19, 1367-1380.	3.9	54
141	Sources of variation in self-incompatibility in the Australian forest tree, Eucalyptus globulus. Annals of Botany, 2010, 105, 737-745.	2.9	17
142	Quantifying phenotypic variation in wood colour in Acacia melanoxylon R.Br Forestry, 2010, 83, 153-162.	2.3	11
143	Genetic variation and parental performance under inbreeding for growth in Eucalyptus globulus. Annals of Forest Science, 2010, 67, 606-606.	2.0	30
144	The potential for gene flow from exotic eucalypt plantations into Australia's rare native eucalypts. Forest Ecology and Management, 2010, 260, 2079-2087.	3.2	26

#	Article	IF	CITATIONS
145	Genetic control of kraft pulp yield in <i>Eucalyptus globulus</i> . Canadian Journal of Forest Research, 2010, 40, 917-927.	1.7	29
146	Microsatellite Based Paternity Analysis in a Clonal Eucalyptus nitens Seed Orchard. Silvae Genetica, 2010, 59, 57-62.	0.8	12
147	Relative importance of tree genetics and microhabitat on macrofungal biodiversity on coarse woody debris. Oecologia, 2009, 160, 335-342.	2.0	6
148	The relationship of the female reproductive success of Eucalyptus globulus to the endogenous properties of the flower. Sexual Plant Reproduction, 2009, 22, 37-44.	2.2	3
149	Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genetics and Genomes, 2009, 5, 291-305.	1.6	77
150	Genetic variation in Eucalyptus nitens pulpwood and wood shrinkage traits. Tree Genetics and Genomes, 2009, 5, 307-316.	1.6	35
151	QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genetics and Genomes, 2009, 5, 713-722.	1.6	58
152	Comparison of contemporary mating patterns in continuous and fragmented <i>Eucalyptus globulus</i> native forests. Molecular Ecology, 2009, 18, 4180-4192.	3.9	77
153	A footprint of treeâ€genetics on the biota of the forest floor. Oikos, 2009, 118, 1917-1923.	2.7	32
154	Biodiversity Consequences of Genetic Variation in Bark Characteristics within a Foundation Tree Species. Conservation Biology, 2009, 23, 1146-1155.	4.7	36
155	Long-term realised and projected growth impacts caused by autumn gum moth defoliation of 2-year-old Eucalyptus nitens plantation trees in Tasmania, Australia. Forest Ecology and Management, 2009, 258, 1896-1903.	3.2	26
156	Non-lethal strategies to reduce browse damage in eucalypt plantations. Forest Ecology and Management, 2009, 259, 45-55.	3.2	14
157	A geographic mosaic of genetic variation within a foundation tree species and its community-level consequences. Ecology, 2009, 90, 1762-1772.	3.2	125
158	The Effects of Drying Temperature and Method of Assessment on the Expression of Genetic Variation in Gross Shrinkage of Eucalyptus globulus Wood Samples. Silvae Genetica, 2009, 58, 252-261.	0.8	3
159	Genetic parameters of intra- and inter-specific hybrids of Eucalyptus globulus and E. nitens. Tree Genetics and Genomes, 2008, 4, 445-460.	1.6	54
160	A microsatellite study on outcrossing rates and contamination in an Eucalyptus globulus breeding arboretum. Journal of Forestry Research, 2008, 19, 136-140.	3.6	11
161	Quantitative trait loci for key defensive compounds affecting herbivory of eucalypts in Australia. New Phytologist, 2008, 178, 846-851.	7.3	34
162	Assessing the risk of pollen-mediated gene flow from exotic Eucalyptus globulus plantations into native eucalypt populations of Australia. Biological Conservation, 2008, 141, 896-907.	4.1	38

#	Article	IF	CITATIONS
163	The risk of pollen-mediated gene flow from exotic Corymbia plantations into native Corymbia populations in Australia. Forest Ecology and Management, 2008, 256, 1-19.	3.2	39
164	Achievements in forest tree improvement in Australia and New Zealand 9. Genetic improvement of <i>Eucalyptus nitens</i> in Australia. Australian Forestry, 2008, 71, 82-93.	0.9	26
165	Few Mendelian Genes Underlie the Quantitative Response of a Forest Tree, Eucalyptus globulus, to a Natural Fungal Epidemic. Genetics, 2008, 178, 563-571.	2.9	64
166	Advances in reproductive biology and seed production systems ofEucalyptus: the case ofEucalyptus globulus. Southern Forests, 2008, 70, 145-154.	0.7	25
167	An AFLP marker approach to lowerâ€level systematics in <i>Eucalyptus</i> (Myrtaceae). American Journal of Botany, 2008, 95, 368-380.	1.7	58
168	Effectiveness of repellents for reducing damage to eucalypt seedlings by browsing mammals. Australian Forestry, 2008, 71, 303-310.	0.9	8
169	Discrimination between seedlings of Eucalyptus globulus, E. nitens and their F1 hybrid using near-infrared reflectance spectroscopy and foliar oil content. Silvae Genetica, 2008, 57, 262-269.	0.8	20
170	Post-pollination capsule development in Eucalyptus globulus seed orchards. Australian Journal of Botany, 2008, 56, 51.	0.6	14
171	Short Note: The Genetic Correlation Between Air-dried Density and Basic Density in Eucalyptus Nitens Wood Cores. Silvae Genetica, 2008, 57, 210-212.	0.8	4
172	Microsatellite and cpDNA variation in island and mainland populations of a regionally rare eucalypt, Eucalyptus perriniana (Myrtaceae). Australian Journal of Botany, 2007, 55, 513.	0.6	19
173	Phylogenetic positioning of anomalous eucalypts by using ITS sequence data. Australian Systematic Botany, 2007, 20, 402.	0.9	11
174	Gene Flow Between Introduced and Native Eucalyptus Species: Morphological Analysis of Tri-Species and Backcross Hybrids Involving E. nitens. Silvae Genetica, 2007, 56, 127-133.	0.8	9
175	Eucalypts. , 2007, , 115-160.		15
176	Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytologist, 2007, 175, 370-380.	7.3	105
177	Origine et diversité génétique de la race locale portugaise d'Eucalyptus globulus. Annals of Forest Science, 2007, 64, 639-647.	2.0	26
178	Patterns of longitudinal within-tree variation in pulpwood and solidwood traits differ among Eucalyptus globulus genotypes. Annals of Forest Science, 2007, 64, 831-837.	2.0	17
179	Constitutive or induced defences - how does Eucalyptus globulus defend itself from larval feeding?. Chemoecology, 2007, 17, 235-243.	1.1	30
180	Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus. Tree Genetics and Genomes, 2007, 4, 85-95.	1.6	31

#	Article	IF	CITATIONS
181	Stability of Genetic-Based Defensive Chemistry Across Life Stages in a Eucalyptus Species. Journal of Chemical Ecology, 2007, 33, 1876-1884.	1.8	26
182	Gene flow between introduced and native Eucalyptus species: Flowering asynchrony as a barrier to F1 hybridisation between exotic E. nitens and native Tasmanian Symphyomyrtus species. Forest Ecology and Management, 2006, 226, 9-21.	3.2	28
183	Gene flow between introduced and native Eucalyptus species: Early-age selection limits invasive capacity of exotic E. ovata×nitens F1 hybrids. Forest Ecology and Management, 2006, 228, 206-214.	3.2	18
184	Effects of domestication on genetic diversity in Eucalyptus globulus. Forest Ecology and Management, 2006, 234, 78-84.	3.2	36
185	The effect of tree spacing on the production of flowers in <i>Eucalyptus nitens</i> . Australian Forestry, 2006, 69, 299-304.	0.9	17
186	Genetic parameters for lignin, extractives and decay inEucalyptus globulus. Annals of Forest Science, 2006, 63, 813-821.	2.0	50
187	Detection and visualization of spatial genetic structure in continuous Eucalyptus globulus forest. Molecular Ecology, 2006, 16, 697-707.	3.9	54
188	How does ontogeny in a Eucalyptus species affect patterns of herbivory by Brushtail Possums?. Functional Ecology, 2006, 20, 982-988.	3.6	38
189	A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics, 2006, 7, 510-523.	16.3	911
190	Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genetics and Genomes, 2006, 2, 61-75.	1.6	74
191	A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genetics and Genomes, 2006, 2, 30-38.	1.6	93
192	Parental and Consensus Linkage Maps of Eucalyptus globulus Using AFLP and Microsatellite Markers. Silvae Genetica, 2006, 55, 202-217.	0.8	28
193	Genetic diversity and mating system of an endangered tree Eucalyptus morrisbyi. Australian Journal of Botany, 2005, 53, 367.	0.6	28
194	Pollinator activity can explain variation in outcrossing rates within individual trees. Austral Ecology, 2005, 30, 319-324.	1.5	17
195	Genetic structure of aMycosphaerella crypticapopulation. Australasian Plant Pathology, 2005, 34, 345.	1.0	14
196	Effects of nutrient variability on the genetic-based resistance of Eucalyptus globulus to a mammalian herbivore and on plant defensive chemistry. Oecologia, 2005, 142, 597-605.	2.0	50
197	Inheritance Of Resistance to Mammalian Herbivores and of Plant Defensive Chemistry in an Eucalyptus Species. Journal of Chemical Ecology, 2005, 31, 357-375.	1.8	22
198	Inheritance Of Resistance To Mammalian Herbivores and Of Plant Defensive Chemistry In A Eucalyptus Species. Journal of Chemical Ecology, 2005, 31, 519-537.	1.8	11

#	Article	IF	CITATIONS
199	Genomic Research in Eucalyptus. Genetica, 2005, 125, 79-101.	1.1	48
200	Pollen dispersal from exotic eucalypt plantations. Conservation Genetics, 2005, 6, 253-257.	1.5	54
201	Gene flow between introduced and native Eucalyptus species: crossability of native Tasmanian species with exotic E. nitens. Australian Journal of Botany, 2005, 53, 465.	0.6	19
202	Population and phylogenetic analysis of the cinnamoyl coA reductase gene in Eucalyptus globulus (Myrtaceae). Australian Journal of Botany, 2005, 53, 827.	0.6	19
203	Genetic variation inEucalyptus globulusfor susceptibility toMycosphaerella nubilosaand its association with tree growth. Australasian Plant Pathology, 2005, 34, 11.	1.0	50
204	Phosphorus fertiliser can induce earlier vegetative phase change in Eucalyptus nitens. Australian Journal of Botany, 2004, 52, 281.	0.6	15
205	Pollination services provided by various size classes of flower visitors to Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany, 2004, 52, 353.	0.6	29
206	Oviposition by autumn gum moth (Mnesampela privata) in relation to Eucalyptus globulus defoliation, larval performance and natural enemies. Agricultural and Forest Entomology, 2004, 6, 205-213.	1.3	11
207	The rare silver gum, Eucalyptus cordata, is leaving its trace in the organellar gene pool of Eucalyptus globulus. Molecular Ecology, 2004, 13, 3751-3762.	3.9	53
208	Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Functional Ecology, 2004, 18, 677-684.	3.6	92
209	Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New Forests, 2004, 27, 115-138.	1.7	151
210	Additive and non-additive genetic parameters from clonally replicated and seedling progenies of Eucalyptus globulus. Theoretical and Applied Genetics, 2004, 108, 1113-1119.	3.6	75
211	Susceptibility of Eucalyptus globulus to Mnesampela privata defoliation in relation to a specific foliar wax compound. Chemoecology, 2004, 14, 157.	1.1	23
212	Factors affecting variation in outcrossing rate in Eucalyptus globulus. Australian Journal of Botany, 2004, 52, 773.	0.6	46
213	Genetic variation of Eucalyptus globulus in relation to autumn gum moth Mnesampela privata (Lepidoptera: Geometridae) oviposition preference. Forest Ecology and Management, 2004, 194, 169-175.	3.2	15
214	Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 275-284.	4.0	118
215	The swift parrot Lathamus discolor (Psittacidae), social bees (Apidae), and native insects as pollinators of Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany, 2004, 52, 371.	0.6	47
216	Advances in pollination techniques for large-scale seed production in Eucalyptusglobulus. Australian Journal of Botany, 2004, 52, 781.	0.6	23

#	Article	IF	CITATIONS
217	Pollinators in seed orchards of Eucalyptus nitens (Myrtaceae). Australian Journal of Botany, 2004, 52, 209.	0.6	19
218	Genetic variation in Eucalyptus globulus in relation to susceptibility from attack by the southern eucalypt leaf beetle, Chrysophtharta agricola. Australian Journal of Botany, 2004, 52, 747.	0.6	23
219	Stability of Outcrossing Rates in Eucalyptus globulus Seedlots. Silvae Genetica, 2004, 53, 42-44b.	0.8	8
220	Pollen tube growth and early ovule development following self- and cross-pollination in Eucalyptus nitens. Sexual Plant Reproduction, 2003, 16, 59-69.	2.2	29
221	Eucalypt hybrid susceptibility to Gonipterus scutellatus (Coleoptera: Curculionidae). Austral Ecology, 2003, 28, 70-74.	1.5	14
222	RELATIVE IMPORTANCE OF PLANT ONTOGENY, HOST GENETIC VARIATION, AND LEAF AGE FOR A COMMON HERBIVORE. Ecology, 2003, 84, 1171-1178.	3.2	64
223	Maternal and carryover effects on early growth of Eucalyptus globulus. Canadian Journal of Forest Research, 2003, 33, 2108-2115.	1.7	60
224	Promotion of flowering in Eucalyptus nitens by paclobutrazol was enhanced by nitrogen fertilizer. Canadian Journal of Forest Research, 2003, 33, 74-81.	1.7	31
225	Gene flow between introduced and native Eucalyptus species: exotic hybrids are establishing in the wild. Australian Journal of Botany, 2003, 51, 429.	0.6	34
226	Corrigendum to: TURNER REVIEW No. 6 Genetic pollution of native eucalypt gene pools—identifying the risks. Australian Journal of Botany, 2003, 51, 333.	0.6	5
227	Genetic control of coppice and lignotuber development in Eucalyptus globulus. Australian Journal of Botany, 2003, 51, 57.	0.6	45
228	Genetic pollution of native eucalypt gene pools—identifying the risks. Australian Journal of Botany, 2003, 51, 1.	0.6	142
229	Pollen competition does not affect the success of self-pollination in Eucalyptus globulus (Myrtaceae). Australian Journal of Botany, 2003, 51, 189.	0.6	16
230	Susceptibility of someEucalyptusspecies and their hybrids to possum damage. Australian Forestry, 2002, 65, 23-30.	0.9	10
231	Early Ovule Development Following Self- and Cross-pollinations in Eucalyptus globulus Labill. ssp. globulus. Annals of Botany, 2002, 89, 613-620.	2.9	31
232	Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany, 2002, 15, 49.	0.9	110
233	Genetic resistance of Eucalyptus globulus to autumn gum moth defoliation and the role of cuticular waxes. Canadian Journal of Forest Research, 2002, 32, 1961-1969.	1.7	52
234	Self-incompatibility in Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany, 2002, 50, 365.	0.6	46

#	Article	IF	CITATIONS
235	Microsatellite and morphological analysis ofEucalyptus globuluspopulations. Canadian Journal of Forest Research, 2002, 32, 59-66.	1.7	58
236	Possum browsing—the downside to a eucalypt hybrid developed for frost tolerance in plantation forestry. Forest Ecology and Management, 2002, 157, 231-245.	3.2	21
237	Susceptibility of Eucalyptus globulus ssp. globulus to sawfly (Perga affinis ssp. insularis) attack and its potential impact on plantation productivity. Forest Ecology and Management, 2002, 160, 189-199.	3.2	36
238	Gene flow between introduced and native Eucalyptus species. New Forests, 2002, 23, 177-191.	1.7	35
239	Eucalypt seed collectors: beware of sampling seedlots from low in the canopy!. Australian Forestry, 2001, 64, 139-142.	0.9	16
240	Maternal inheritance of the chloroplast genome in <i>Eucalyptus globulus</i> and interspecific hybrids. Genome, 2001, 44, 831-835.	2.0	49
241	Variation in seedling morphology in the Eucalyptus risdonii–E. tenuiramis complex. Australian Journal of Botany, 2001, 49, 43.	0.6	4
242	Chloroplast DNA phylogeography of Eucalyptus globulus. Australian Journal of Botany, 2001, 49, 585.	0.6	87
243	CHLOROPLAST SHARING IN THE TASMANIAN EUCALYPTS. Evolution; International Journal of Organic Evolution, 2001, 55, 703.	2.3	112
244	The origin of Eucalyptus vernicosa, a unique shrub eucalypt. Biological Journal of the Linnean Society, 2001, 74, 397-405.	1.6	11
245	The origin of Eucalyptus vernicosa, a unique shrub eucalypt. Biological Journal of the Linnean Society, 2001, 74, 397-405.	1.6	13
246	Maternal inheritance of the chloroplast genome in <i>Eucalyptus globulus</i> and interspecific hybrids. Genome, 2001, 44, 831-835.	2.0	24
247	Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids. Genome, 2001, 44, 831-5.	2.0	8
248	F1 hybrid inviability in Eucalyptus: the case of E. ovata × E. globulus. Heredity, 2000, 85, 242-250.	2.6	50
249	PLANT GENETICS AFFECTS ARTHROPOD COMMUNITY RICHNESS AND COMPOSITION: EVIDENCE FROM A SYNTHETIC EUCALYPT HYBRID POPULATION. Evolution; International Journal of Organic Evolution, 2000, 54, 1938-1946.	2.3	178
250	PLANT GENETICS AFFECTS ARTHROPOD COMMUNITY RICHNESS AND COMPOSITION: EVIDENCE FROM A SYNTHETIC EUCALYPT HYBRID POPULATION. Evolution; International Journal of Organic Evolution, 2000, 54, 1938.	2.3	6
251	Geographic Patterns of Genetic Variation in Eucalyptus globulus ssp. globulus and a Revised Racial Classification. Australian Journal of Botany, 1999, 47, 237.	0.6	164
252	Chloroplast DNA evidence for reticulate evolution inEucalyptus(Myrtaceae). Molecular Ecology, 1999, 8, 739-751.	3.9	89

#	Article	IF	CITATIONS
253	Response of Eucalyptus nitens seedlings to gibberellin biosynthesis inhibitors. Plant Growth Regulation, 1999, 27, 125-129.	3.4	18
254	ITS Sequence Data Resolve Higher Level Relationships Among the Eucalypts. Molecular Phylogenetics and Evolution, 1999, 12, 215-223.	2.7	68
255	Testing single visit pollination procedures forEucalyptus globulusandE. nitens. Australian Forestry, 1999, 62, 346-352.	0.9	30
256	PLANT HYBRID ZONES AFFECT BIODIVERSITY: TOOLS FOR A GENETIC-BASED UNDERSTANDING OF COMMUNITY STRUCTURE. Ecology, 1999, 80, 416-428.	3.2	157
257	Morphological and genetic variation in Centrolepis paludicola and C. monogyna (Centrolepidaceae). Australian Systematic Botany, 1999, 12, 679.	0.9	4
258	Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). American Journal of Botany, 1999, 86, 1038-46.	1.7	15
259	Genetic Control of Reproductive and Vegetative Phase Change in the Eucalyptus risdonii - E. tenuiramis Complex. Australian Journal of Botany, 1998, 46, 45.	0.6	52
260	Fine-scale Genetic Structure of Eucalyptus globulus ssp. globulus Forest Revealed by RAPDs. Australian Journal of Botany, 1998, 46, 583.	0.6	39
261	Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae). Australian Systematic Botany, 1998, 11, 25.	0.9	60
262	Mycosphaerella leaf disease: genetic variation in damage to Eucalyptus nitens, Eucalyptus globulus, and their F1 hybrid. Canadian Journal of Forest Research, 1997, 27, 750-759.	1.7	74
263	Variation in leaf waxes of the Tasmanian Eucalyptus species—I. Subgenus Symphyomyrtus. Biochemical Systematics and Ecology, 1997, 25, 631-657.	1.3	41
264	Variation in volatile leaf oils of the Tasmanian Eucalyptus species II. Subgenus Symphyomyrtus. Biochemical Systematics and Ecology, 1996, 24, 547-569.	1.3	58
265	A comparison of genetic information from open-pollinated and control-pollinated progeny tests in two eucalypt species. Theoretical and Applied Genetics, 1996, 92, 53-63.	3.6	70
266	Partitioning and distribution of RAPD variation in a forest tree species, Eucalyptus globulus (Myrtaceae). Heredity, 1995, 74, 628-637.	2.6	125
267	Plant hybrid zones as centers of biodiversity: the herbivore community of two endemic Tasmanian eucalypts. Oecologia, 1994, 97, 481-490.	2.0	165
268	A Paedomorphocline in Eucalyptus. II. Variation in Seedling Morphology in the E. risdonii/E. tenuiramis Complex. Australian Journal of Botany, 1992, 40, 789.	0.6	12
269	Conservation of Hybrid Plants. Science, 1991, 254, 779-779.	12.6	75
270	Restriction Fragment Length Polymorphisms in Chloroplast DNA From Six Species of Eucalyptus. Australian Journal of Botany, 1991, 39, 399.	0.6	22

#	Article	IF	CITATIONS
271	A Paedomorphocline in Eucalyptus: Natural Variation in the E. risdonii/E. tenuiramis Complex. Australian Journal of Botany, 1991, 39, 545.	0.6	28
272	Inheritance of freezing resistance in interspecific F1 hybrids of Eucalyptus. Theoretical and Applied Genetics, 1991, 83, 126-135.	3.6	25
273	THE EVOLUTIONARY SIGNIFICANCE OF HYBRIDIZATION IN EUCALYPTUS. Evolution; International Journal of Organic Evolution, 1990, 44, 2151-2152.	2.3	19
274	The Evolutionary Significance of Hybridization in Eucalyptus. Evolution; International Journal of Organic Evolution, 1990, 44, 2151.	2.3	7
275	Unilateral Cross-Incompatibility in Eucalyptus: the Case of Hybridisation Between E. globulus and E. nitens. Australian Journal of Botany, 1990, 38, 383.	0.6	84
276	In Vitro Germination of Eucalyptus Pollen: Response to Variation in Boric Acid and Sucrose. Australian Journal of Botany, 1989, 37, 429.	0.6	36
277	Eucalypt breeding in France. Australian Forestry, 1986, 49, 210-218.	0.9	15
278	Variation in the Eucalyptus gunnii-archeri Complex. I. Variation in the Adult Phenotype. Australian Journal of Botany, 1985, 33, 337.	0.6	20
279	A community and ecosystem genetics approach to conservation biology and management. , 0, , 50-73.		13
280	Variation in constitutive and induced chemistry in the needles, bark and roots of young Pinus radiata trees. Trees - Structure and Function, 0, , 1.	1.9	5
281	Genetic control of the operculum and capsule morphology of <i>Eucalyptus globulus</i> . Annals of Botany. O	2.9	1