Vikas Nanda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/595351/publications.pdf

Version: 2024-02-01

		159585	138484	
98	3,777	30	58	
papers	citations	h-index	g-index	
103	103	103	4472	
103	103	103	44/2	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Quantifying structural relationships of metal-binding sites suggests origins of biological electron transfer. Science Advances, 2022, 8, eabj3984.	10.3	24
2	Anaerobic Expression and Purification of Holo-CCIS, an Artificial Iron-sulfur Protein. Bio-protocol, 2021, 11, e4169.	0.4	O
3	Biallelic hypomorphic variants in ALDH1A2 cause a novel lethal human multiple congenital anomaly syndrome encompassing diaphragmatic, pulmonary, and cardiovascular defects. Human Mutation, 2021, 42, 506-519.	2.5	12
4	Self-assembled elastin-like polypeptide fusion protein coacervates as competitive inhibitors of advanced glycation end-products enhance diabetic wound healing. Journal of Controlled Release, 2021, 333, 176-187.	9.9	23
5	Design Strategies to Tune the Structural and Mechanical Properties of Synthetic Collagen Hydrogels. Biomacromolecules, 2021, 22, 3440-3450.	5.4	16
6	A folding insulator defines cryptic domains in tropomyosin. Journal of Molecular Biology, 2021, 433, 167281.	4.2	0
7	Biophysical Characterization of Iron-Sulfur Proteins. Bio-protocol, 2021, 11, e4202.	0.4	0
8	Comparative dynamics of tropomyosin in vertebrates and invertebrates. Proteins: Structure, Function and Bioinformatics, 2020, 88, 265-273.	2.6	6
9	Zeta Potential Prediction from Protein Structure in General Aqueous Electrolyte Solutions. Langmuir, 2020, 36, 13799-13803.	3.5	13
10	In Vivo Biogenesis of a De Novo Designed Iron–Sulfur Protein. ACS Synthetic Biology, 2020, 9, 3400-3407.	3.8	10
11	Biophysical analysis of the structural evolution of substrate specificity in RuBisCO. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30451-30457.	7.1	14
12	Design of a Fe ₄ S ₄ cluster into the core of a <i>deÂnovo</i> fourâ€helix bundle. Biotechnology and Applied Biochemistry, 2020, 67, 574-585.	3.1	6
13	Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22698-22704.	7.1	39
14	Small protein folds at the root of an ancient metabolic network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7193-7199.	7.1	32
15	Lysosomal protein thermal stability does not correlate with cellular half-life: global observations and a case study of tripeptidyl-peptidase 1. Biochemical Journal, 2020, 477, 727-745.	3.7	3
16	De novo design of symmetric ferredoxins that shuttle electrons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14557-14562.	7.1	41
17	PET-RAFT and SAXS: High Throughput Tools To Study Compactness and Flexibility of Single-Chain Polymer Nanoparticles. Macromolecules, 2019, 52, 8295-8304.	4.8	43
18	Computational Simulation of Adapter Length-Dependent LASSO Probe Capture Efficiency. Biomolecules, 2019, 9, 199.	4.0	3

#	Article	IF	CITATIONS
19	Protein tolerance to random circular permutation correlates with thermostability and local energetics of residue-residue contacts. Protein Engineering, Design and Selection, 2019, 32, 489-501.	2.1	9
20	Catalytic linkage between caspase activity and proteostasis in <i>Archaea</i> . Environmental Microbiology, 2019, 21, 286-298.	3.8	4
21	Building bigger beta-barrels. ELife, 2019, 8, .	6.0	4
22	Modular origins of biological electron transfer chains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1280-1285.	7.1	29
23	Hydrodynamic radius coincides with the slip plane position in the electrokinetic behavior of lysozyme. Proteins: Structure, Function and Bioinformatics, 2018, 86, 515-523.	2.6	10
24	Designing phenylalanine-based hybrid biological materials: controlling morphology <i>via</i> molecular composition. Organic and Biomolecular Chemistry, 2018, 16, 2499-2507.	2.8	13
25	Marginal protein stability drives subcellular proteome isoelectric point. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11778-11783.	7.1	12
26	How electrostatic networks modulate specificity and stability of collagen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6207-6212.	7.1	31
27	Hetero-assembly of a dual \hat{l}^2 -amyloid variant peptide system. Chemical Communications, 2018, 54, 6380-6383.	4.1	10
28	Minimal Heterochiral <i>de Novo</i> Designed 4Fe–4S Binding Peptide Capable of Robust Electron Transfer. Journal of the American Chemical Society, 2018, 140, 11210-11213.	13.7	42
29	Structural and Dynamic Properties of Allergen and Non-Allergen Forms of Tropomyosin. Structure, 2018, 26, 997-1006.e5.	3.3	30
30	Parallels between DNA and collagen – comparing elastic models of the double and triple helix. Scientific Reports, 2017, 7, 12802.	3.3	4
31	Searching for the Pareto frontier in multi-objective protein design. Biophysical Reviews, 2017, 9, 339-344.	3.2	6
32	Collagen mimetic peptide discs promote assembly of a broad range of natural protein fibers through hydrophobic interactions. Organic and Biomolecular Chemistry, 2017, 15, 5893-5898.	2.8	8
33	Congenital Cataract in Gpr161vl/vl Mice Is Modified by Proximal Chromosome 15. PLoS ONE, 2017, 12, e0170724.	2.5	2
34	Circular Dichroism Spectroscopy of Collagen Fibrillogenesis: A New Use for an Old Technique. Biophysical Journal, 2016, 111, 2377-2386.	0.5	55
35	Heterogeneous Epitaxy: Designed Peptides Scale Graphene's Surface. Biophysical Journal, 2016, 110, 2291-2292.	0.5	0
36	Getting to the bottom of the TIM barrel. Nature Chemical Biology, 2016, 12, 2-3.	8.0	4

#	Article	IF	Citations
37	Dissecting Electrostatic Contributions to Folding and Self-Assembly Using Designed Multicomponent Peptide Systems. Journal of the American Chemical Society, 2016, 138, 4362-4367.	13.7	30
38	Structural principles for computational and de novo design of 4Fe–4S metalloproteins. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 531-538.	1.0	28
39	Molecular Self-Assembly Strategy for Generating Catalytic Hybrid Polypeptides. PLoS ONE, 2016, 11, e0153700.	2.5	7
40	Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides. Biochemistry, 2015, 54, 4987-4997.	2.5	18
41	Computational redesign of the lipid-facing surface of the outer membrane protein OmpA. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9632-9637.	7.1	30
42	The orphan GPCR, Gpr161, regulates the retinoic acid and canonical Wnt pathways during neurulation. Developmental Biology, 2015, 402, 17-31.	2.0	29
43	Empirical estimation of local dielectric constants: Toward atomistic design of collagen mimetic peptides. Biopolymers, 2015, 104, 360-370.	2.4	23
44	Potential Pitfalls and Solutions for Use of Fluorescent Fusion Proteins to Study the Lysosome. PLoS ONE, 2014, 9, e88893.	2.5	55
45	Computational Design of Metalloproteins. Methods in Molecular Biology, 2014, 1216, 233-249.	0.9	4
46	Functionâ€based assessment of structural similarity measurements using metal coâ€factor orientation. Proteins: Structure, Function and Bioinformatics, 2014, 82, 648-656.	2.6	14
47	Morphological Diversity and Polymorphism of Self-Assembling Collagen Peptides Controlled by Length of Hydrophobic Domains. ACS Nano, 2014, 8, 12514-12523.	14.6	35
48	Methacrylation Induces Rapid, Temperature-Dependent, Reversible Self-Assembly of Type-I Collagen. Langmuir, 2014, 30, 11204-11211.	3.5	51
49	Design of net-charged abc-type collagen heterotrimers. Journal of Structural Biology, 2014, 185, 163-167.	2.8	10
50	Prediction and Design of Outer Membrane Protein–Protein Interactions. Methods in Molecular Biology, 2013, 1063, 183-196.	0.9	5
51	Nanosecond dynamics of influenza A/M2TM and an amantadine resistant mutant probed by time-dependent red shifts of a native tryptophan. Chemical Physics, 2013, 422, 73-79.	1.9	5
52	Self-Assembly of Left- and Right-Handed Molecular Screws. Journal of the American Chemical Society, 2013, 135, 18762-18765.	13.7	55
53	Sequence recombination improves target specificity in a redesigned collagen peptide <i>abc</i> â€type heterotrimer. Proteins: Structure, Function and Bioinformatics, 2013, 81, 386-393.	2.6	10
54	Using D-amino acids to delineate the mechanism of protein folding: Application to Trp-cage. Chemical Physics, 2013, 422, 131-134.	1.9	14

#	Article	IF	CITATIONS
55	Evaluating pH-Induced Gastrointestinal Aggregation of Arachis hypogaea 1 Fragments as Potential Components of Peanut Allergy. Journal of Agricultural and Food Chemistry, 2013, 61, 8430-8435.	5.2	5
56	Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10073-10077.	7.1	43
57	Control of Collagen Stability and Heterotrimer Specificity through Repulsive Electrostatic Interactions. Biomolecules, 2013, 3, 986-996.	4.0	7
58	Circular Permutation Directs Orthogonal Assembly in Complex Collagen Peptide Mixtures. Journal of Biological Chemistry, 2013, 288, 31616-31623.	3.4	11
59	Temperature Dependent Reversible Self Assembly of Methacrylated Collagen Gels. , 2013, , .		0
60	Energetic Selection of Topology in Ferredoxins. PLoS Computational Biology, 2012, 8, e1002463.	3.2	29
61	Compositional Control of Higher Order Assembly Using Synthetic Collagen Peptides. Journal of the American Chemical Society, 2012, 134, 47-50.	13.7	50
62	A knowledgeâ€based potential highlights unique features of membrane αâ€helical and βâ€barrel protein insertion and folding. Protein Science, 2012, 21, 50-62.	7.6	36
63	Empirical and computational design of iron-sulfur cluster proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1256-1262.	1.0	30
64	Computational Design of a Collagen A:B:C-Type Heterotrimer. Journal of the American Chemical Society, 2011, 133, 15260-15263.	13.7	52
65	Computational Design of Thermostabilizing <scp>d</scp> -Amino Acid Substitutions. Journal of the American Chemical Society, 2011, 133, 18750-18759.	13.7	38
66	The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase. Metallomics, 2011, 3, 765.	2.4	20
67	Design principles for chlorophyllâ€binding sites in helical proteins. Proteins: Structure, Function and Bioinformatics, 2011, 79, 463-476.	2.6	20
68	Computational Design of Intermolecular Stability and Specificity in Protein Self-assembly. Methods in Enzymology, 2011, 487, 575-593.	1.0	8
69	De novo design of a non-natural fold for an iron–sulfur protein: Alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 406-413.	1.0	60
70	Designing artificial enzymes by intuition and computation. Nature Chemistry, 2010, 2, 15-24.	13.6	232
71	<i>De Novo</i> Self-Assembling Collagen Heterotrimers Using Explicit Positive and Negative Design. Biochemistry, 2010, 49, 2307-2316.	2.5	34
72	Mirrors in the PDB: left-handed î±-turns guide design with D-amino acids. BMC Structural Biology, 2009, 9, 61.	2.3	14

#	Article	IF	Citations
73	Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function. Journal of Inorganic Biochemistry, 2009, 103, 1054-1060.	3.5	18
74	Aromatic Interactions Promote Self-Association of Collagen Triple-Helical Peptides to Higher-Order Structures. Biochemistry, 2009, 48, 7959-7968.	2.5	102
75	Are aromatic carbon donor hydrogen bonds linear in proteins?. Proteins: Structure, Function and Bioinformatics, 2008, 70, 489-497.	2.6	28
76	Structural basis for the function and inhibition of an influenza virus proton channel. Nature, 2008, 451, 596-599.	27.8	549
77	Do-it-yourself enzymes. Nature Chemical Biology, 2008, 4, 273-275.	8.0	20
78	Using \hat{l}_{\pm} -Helical Coiled-Coils to Design Nanostructured Metalloporphyrin Arrays. Journal of the American Chemical Society, 2008, 130, 11921-11927.	13.7	63
79	Ez, a Depth-dependent Potential for Assessing the Energies of Insertion of Amino Acid Side-chains into Membranes: Derivation and Applications to Determining the Orientation of Transmembrane and Interfacial Helices. Journal of Molecular Biology, 2007, 366, 436-448.	4.2	143
80	The role of protein homochirality in shaping the energy landscape of folding. Protein Science, 2007, 16, 1667-1675.	7.6	26
81	Computational Design of Heterochiral Peptides against a Helical Target. Journal of the American Chemical Society, 2006, 128, 809-816.	13.7	28
82	Polar Networks Control Oligomeric Assembly in Membranes. Journal of the American Chemical Society, 2006, 128, 4170-4171.	13.7	31
83	Automated use of mutagenesis data in structure prediction. Proteins: Structure, Function and Bioinformatics, 2005, 59, 454-466.	2.6	9
84	Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins. Proteins: Structure, Function and Bioinformatics, 2005, 59, 496-509.	2.6	85
85	A push-pull mechanism for regulating integrin function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1424-1429.	7.1	118
86	De Novo Design of a Redox-Active Minimal Rubredoxin Mimic. Journal of the American Chemical Society, 2005, 127, 5804-5805.	13.7	126
87	Computational De Novo Design and Characterization of a Four-Helix Bundle Protein that Selectively Binds a Nonbiological Cofactor. Journal of the American Chemical Society, 2005, 127, 1346-1347.	13.7	167
88	Sequence Determinants of a Transmembrane Proton Channel: An Inverse Relationship between Stability and Function. Journal of Molecular Biology, 2005, 347, 169-179.	4.2	59
89	Synergistic Interactions between Aqueous and Membrane Domains of a Designed Protein Determine its Fold and Stability. Journal of Molecular Biology, 2005, 348, 1225-1233.	4.2	20
90	Rotational orientation of monomers within a designed homo-oligomer transmembrane helical bundle. Protein Science, 2005, 14, 1019-1024.	7.6	10

#	Article	IF	CITATION
91	The conformation of the pore region of the M2 proton channel depends on lipid bilayer environment. Protein Science, 2005, 14, 856-861.	7.6	91
92	Dimerization of the Transmembrane Domain of Integrin $\hat{l}\pm IIb$ Subunit in Cell Membranes. Journal of Biological Chemistry, 2004, 279, 26666-26673.	3.4	137
93	Melittin as model system for probing interactions between proteins and cyclodextrins. Proteins: Structure, Function and Bioinformatics, 2004, 55, 275-287.	2.6	28
94	A New Method for Determining the Local Environment and Orientation of Individual Side Chains of Membrane-Binding Peptides. Journal of the American Chemical Society, 2004, 126, 5078-5079.	13.7	101
95	Simulated Evolution of Emergent Chiral Structures in Polyalanine. Journal of the American Chemical Society, 2004, 126, 14459-14467.	13.7	29
96	Association of a Model Transmembrane Peptide Containing Gly in a Heptad Sequence Motif. Biophysical Journal, 2004, 87, 3421-3429.	0.5	39
97	Aromatic interactions in homeodomains contribute to the low quantum yield of a conserved, buried tryptophan., 2000, 40, 112-125.		54
98	Hydrophobic Clustering in Acid-Denatured IL-2 and Fluorescence of a Trp NH···π H-bond. Biochemical and Biophysical Research Communications, 2000, 279, 770-778.	2.1	13