Kazi M Islam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5950450/publications.pdf

Version: 2024-02-01

933447 1125743 22 274 10 13 citations h-index g-index papers 22 22 22 302 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells. Solar Energy, 2014, 103, 263-268.	6.1	58
2	Inâ€Plane and Outâ€ofâ€Plane Optical Properties of Monolayer, Fewâ€Layer, and Thinâ€Film MoS ₂ from 190 to 1700 nm and Their Application in Photonic Device Design. Advanced Photonics Research, 2021, 2, 2000180.	3.6	35
3	Reduction of interface traps at the amorphous-silicon/crystalline-silicon interface by hydrogen and nitrogen annealing. Solar Energy, 2013, 98, 236-240.	6.1	29
4	Transmissive microfluidic active cooling for concentrator photovoltaics. Applied Energy, 2019, 236, 906-915.	10.1	27
5	Rapid-throughput solution-based production of wafer-scale 2D MoS2. Applied Physics Letters, 2019, 114,	3.3	18
6	Field testing of a spectrum-splitting transmissive concentrator photovoltaic module. Renewable Energy, 2019, 139, 806-814.	8.9	17
7	Large-Area, High-Specific-Power Schottky-Junction Photovoltaics from CVD-Grown Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2022, 14, 24281-24289.	8.0	15
8	Comparative study of thin film n-i-p a-Si:H solar cells to investigate the effect of absorber layer thickness on the plasmonic enhancement using gold nanoparticles. Solar Energy, 2015, 120, 257-262.	6.1	13
9	Optical Design and Validation of an Infrared Transmissive Spectrum Splitting Concentrator Photovoltaic Module. IEEE Journal of Photovoltaics, 2017, 7, 1469-1478.	2.5	10
10	Solar Cogeneration of Electricity with High-Temperature Process Heat. Cell Reports Physical Science, 2020, 1, 100135.	5.6	10
11	A transmissive concentrator photovoltaic module with cells directly cooled by silicone oil for solar cogeneration systems. Applied Energy, 2021, 288, 116622.	10.1	9
12	Efficiency enhancement in thin-film c-Si HIT solar cells using luminescent 2.85 nm silicon nanoparticles. , $2014, , .$		7
13	Improved efficiency of thin film a-Si:H solar cells with Au nanoparticles. , 2013, , .		6
14	Characterization of Dynamic and Nanoscale Materials and Metamaterials with Continuously Referenced Interferometry. Advanced Optical Materials, 2019, 7, 1901128.	7.3	6
15	Simulation of a-Si/c-GaAs/c-Si Heterojunction Solar Cells. , 2012, , .		4
16	ITO, Si3N4 and ZnO:Al – Simulation of Different Anti-reflection Coatings (ARC) for Thin Film a-Si:H Solar Cells. , 2013, , .		4
17	\$#x223C;10% increase in short-circuit current density using 100nm plasmonic Au nanoparticles on thin film n-i-p a-Si:H solar cells. , 2014, , .		4
18	Modeling of InAs/GaAs Quantum Dot Solar Cells. , 2013, , .		1

#	Article	lF	CITATIONS
19	Design and field testing of a sunflower hybrid concentrator photovoltaic-thermal receiver. Cell Reports Physical Science, 2022, 3, 100887.	5.6	1
20	Transmissive spectrum-splitting concentrator photovoltaic cells and modules. , 2017, , .		0
21	A Hybrid CPV/T System Featuring Transmissive, Spectrum-Splitting Concentrator Photovoltaics. , 2018, , .		O
22	Direct Fluid Cooling of Concentrator Photovoltaics for Hybrid Photovoltaic-Solar Thermal Energy Conversion., 2019,,.		O