
Andrew Dillin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 2011, 331, 456-461.	6.0	2,107
2	Adapting Proteostasis for Disease Intervention. Science, 2008, 319, 916-919.	6.0	2,104
3	ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biology, 2013, 15, 741-750.	4.6	1,255
4	Biological and Chemical Approaches to Diseases of Proteostasis Deficiency. Annual Review of Biochemistry, 2009, 78, 959-991.	5.0	1,035
5	Rates of Behavior and Aging Specified by Mitochondrial Function During Development. Science, 2002, 298, 2398-2401.	6.0	974
6	The Cell-Non-Autonomous Nature of Electron Transport Chain-Mediated Longevity. Cell, 2011, 144, 79-91.	13.5	898
7	Opposing Activities Protect Against Age-Onset Proteotoxicity. Science, 2006, 313, 1604-1610.	6.0	782
8	Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nature Methods, 2004, 1, 39-45.	9.0	682
9	Aging and Survival: The Genetics of Life Span Extension by Dietary Restriction. Annual Review of Biochemistry, 2008, 77, 727-754.	5.0	552
10	The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nature Communications, 2014, 5, 5659.	5.8	546
11	PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature, 2007, 447, 550-555.	13.7	500
12	XBP-1 Is a Cell-Nonautonomous Regulator of Stress Resistance and Longevity. Cell, 2013, 153, 1435-1447.	13.5	485
13	Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice. Cell, 2009, 139, 1157-1169.	13.5	450
14	Regulation of Life-Span by Germ-Line Stem Cells in Caenorhabditis elegans. Science, 2002, 295, 502-505.	6.0	439
15	Timing Requirements for Insulin/IGF-1 Signaling in C. elegans. Science, 2002, 298, 830-834.	6.0	426
16	Aging as an Event of Proteostasis Collapse. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004440-a004440.	2.3	420
17	The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature Communications, 2013, 4, 2267.	5.8	416
18	DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. Developmental Cell, 2017, 42, 9-21.e5.	3.1	397

#	Article	IF	CITATIONS
19	RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature, 2012, 489, 263-268.	13.7	372
20	Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature, 2011, 470, 404-408.	13.7	339
21	Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature, 2012, 489, 304-308.	13.7	339
22	Protein homeostasis and aging in neurodegeneration. Journal of Cell Biology, 2010, 190, 719-729.	2.3	336
23	Quantitative Mass Spectrometry Identifies Insulin Signaling Targets in <i>C. elegans</i> . Science, 2007, 317, 660-663.	6.0	299
24	The insulin paradox: aging, proteotoxicity and neurodegeneration. Nature Reviews Neuroscience, 2008, 9, 759-767.	4.9	282
25	Two Conserved Histone Demethylases Regulate Mitochondrial Stress-Induced Longevity. Cell, 2016, 165, 1209-1223.	13.5	279
26	Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR mt. Cell, 2016, 165, 1197-1208.	13.5	272
27	The UPR ER : Sensor and Coordinator of Organismal Homeostasis. Molecular Cell, 2017, 66, 761-771.	4.5	227
28	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053.	13.5	213
29	Differential Scales of Protein Quality Control. Cell, 2014, 157, 52-64.	13.5	207
30	Fine-Tuning of Drp1/Fis1 Availability by AKAP121/Siah2 Regulates Mitochondrial Adaptation to Hypoxia. Molecular Cell, 2011, 44, 532-544.	4.5	202
31	TRPV1 Pain Receptors Regulate Longevity and Metabolism by Neuropeptide Signaling. Cell, 2014, 157, 1023-1036.	13.5	195
32	The Mitochondrial Unfolded Protein Response Is Mediated Cell-Non-autonomously by Retromer-Dependent Wnt Signaling. Cell, 2018, 174, 870-883.e17.	13.5	183
33	Neuroendocrine Coordination of Mitochondrial Stress Signaling and Proteostasis. Cell, 2016, 166, 1553-1563.e10.	13.5	181
34	Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response. Cell, 2016, 166, 1539-1552.e16.	13.5	179
35	Walking the tightrope: proteostasis and neurodegenerative disease. Journal of Neurochemistry, 2016, 137, 489-505.	2.1	176
36	DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nature Cell Biology, 2013, 15, 491-501.	4.6	175

#	Article	IF	CITATIONS
37	HSF-1–mediated cytoskeletal integrity determines thermotolerance and life span. Science, 2014, 346, 360-363.	6.0	174
38	Phosphorylation of LC3 by the Hippo Kinases STK3/STK4 Is Essential for Autophagy. Molecular Cell, 2015, 57, 55-68.	4.5	158
39	Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Science Translational Medicine, 2019, 11, .	5.8	157
40	The Sense of Smell Impacts Metabolic Health and Obesity. Cell Metabolism, 2017, 26, 198-211.e5.	7.2	151
41	Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nature Reviews Molecular Cell Biology, 2014, 15, 211-217.	16.1	147
42	Signaling Networks Determining Life Span. Annual Review of Biochemistry, 2016, 85, 35-64.	5.0	143
43	Mitochondrial proteostasis in the context of cellular and organismal health and aging. Journal of Biological Chemistry, 2019, 294, 5396-5407.	1.6	136
44	Proteostasis and aging of stem cells. Trends in Cell Biology, 2014, 24, 161-170.	3.6	130
45	C. elegans Telomeres Contain G-Strand and C-Strand Overhangs that Are Bound by Distinct Proteins. Cell, 2008, 132, 745-757.	13.5	121
46	Tipping the metabolic scales towards increased longevity in mammals. Nature Cell Biology, 2015, 17, 196-203.	4.6	120
47	A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature, 2009, 460, 396-399.	13.7	117
48	A Ribosomal Perspective on Proteostasis and Aging. Cell Metabolism, 2016, 23, 1004-1012.	7.2	116
49	The good and the bad of being connected: the integrons of aging. Current Opinion in Cell Biology, 2014, 26, 107-112.	2.6	115
50	A Futile Battle? Protein Quality Control and the Stress of Aging. Developmental Cell, 2018, 44, 139-163.	3.1	112
51	Heterotypic Signals from Neural HSF-1 Separate Thermotolerance from Longevity. Cell Reports, 2015, 12, 1196-1204.	2.9	106
52	Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy, 2016, 12, 261-272.	4.3	100
53	The trifecta of aging in Caenorhabditis elegans. Experimental Gerontology, 2006, 41, 894-903.	1.2	99
54	Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in <i>C. elegans</i> . Science, 2020, 367, 436-440.	6.0	92

#	Article	IF	CITATIONS
55	The Hyaluronidase, TMEM2, Promotes ER Homeostasis and Longevity Independent of the UPRER. Cell, 2019, 179, 1306-1318.e18.	13.5	87
56	Expanding the Genetic Code of <i>Caenorhabditis elegans</i> Using Bacterial Aminoacyl-tRNA Synthetase/tRNA Pairs. ACS Chemical Biology, 2012, 7, 1292-1302.	1.6	80
57	The specifics of small interfering RNA specificity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6289-6291.	3.3	75
58	Beyond the cell factory: Homeostatic regulation of and by the UPR ^{ER} . Science Advances, 2020, 6, eabb9614.	4.7	75
59	Optimizing Dietary Restriction for Genetic Epistasis Analysis and Gene Discovery in C. elegans. PLoS ONE, 2009, 4, e4535.	1.1	74
60	Temporal requirements of insulin/IGFâ€l signaling for proteotoxicity protection. Aging Cell, 2010, 9, 126-134.	3.0	73
61	Visible light reduces C. elegans longevity. Nature Communications, 2018, 9, 927.	5.8	70
62	Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends in Endocrinology and Metabolism, 2009, 20, 259-264.	3.1	65
63	Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism, 2021, 33, 1322-1341.e13.	7.2	65
64	Separable Functions of <i>ORC5</i> in Replication Initiation and Silencing in <i>Saccharomyces cerevisiae</i> . Genetics, 1997, 147, 1053-1062.	1.2	64
65	Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genetics, 2019, 15, e1008029.	1.5	59
66	Uncoupling of Longevity and Telomere Length in C. elegans. PLoS Genetics, 2005, 1, e30.	1.5	55
67	Ageing and protein aggregation-mediated disorders: from invertebrates to mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 94-98.	1.8	54
68	Temporal requirements of heat shock factorâ€l for longevity assurance. Aging Cell, 2012, 11, 491-499.	3.0	54
69	Systemic effects of mitochondrial stress. EMBO Reports, 2020, 21, e50094.	2.0	54
70	Mitochondria as Cellular and Organismal Signaling Hubs. Annual Review of Cell and Developmental Biology, 2022, 38, 179-218.	4.0	52
71	Emerging Role of Sensory Perception in Aging and Metabolism. Trends in Endocrinology and Metabolism, 2016, 27, 294-303.	3.1	50
72	UPR ^{ER} promotes lipophagy independent of chaperones to extend life span. Science Advances, 2020, 6, eaaz1441.	4.7	48

#	Article	IF	CITATIONS
73	Analysis of Aging in Caenorhabditis elegans. Methods in Cell Biology, 2012, 107, 353-381.	0.5	47
74	Can aging be 'drugged'?. Nature Medicine, 2015, 21, 1400-1405.	15.2	47
75	<scp>FOXO</scp> 4 is necessary for neural differentiation of human embryonic stem cells. Aging Cell, 2013, 12, 518-522.	3.0	39
76	Endocrine aspects of organelle stress — cell non-autonomous signaling of mitochondria and the ER. Current Opinion in Cell Biology, 2015, 33, 102-110.	2.6	39
77	Spatial regulation of the actin cytoskeleton by HSF-1 during aging. Molecular Biology of the Cell, 2018, 29, 2522-2527.	0.9	39
78	X Chromosome Domain Architecture Regulates Caenorhabditis elegans Lifespan but Not Dosage Compensation. Developmental Cell, 2019, 51, 192-207.e6.	3.1	39
79	The Yin-Yang of Sirtuins. Science, 2007, 317, 461-462.	6.0	38
80	Mitochondrial UPR: A Double-Edged Sword. Trends in Cell Biology, 2016, 26, 563-565.	3.6	36
81	Metabolism, ubiquinone synthesis, and longevity. Genes and Development, 2005, 19, 2399-2406.	2.7	35
82	A kinetic assessment of the <i>C. elegans</i> amyloid disaggregation activity enables uncoupling of disassembly and proteolysis. Protein Science, 2009, 18, 2231-2241.	3.1	31
83	Transient activation of the UPR ^{ER} is an essential step in the acquisition of pluripotency during reprogramming. Science Advances, 2019, 5, eaaw0025.	4.7	31
84	Divergent Nodes of Non-autonomous UPRER Signaling through Serotonergic and Dopaminergic Neurons. Cell Reports, 2020, 33, 108489.	2.9	30
85	The stressful influence of microbes. Nature, 2014, 508, 328-329.	13.7	29
86	The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity. Cell Metabolism, 2015, 22, 151-163.	7.2	29
87	Systemic regulation of mitochondria by germline proteostasis prevents protein aggregation in the soma of <i>C. elegans</i> . Science Advances, 2021, 7, .	4.7	28
88	A Krüppel-like factor downstream of the E3 ligase WWP-1 mediates dietary-restriction-induced longevity in Caenorhabditis elegans. Nature Communications, 2014, 5, 3772.	5.8	27
89	The UPRmt preserves mitochondrial import to extend lifespan. Journal of Cell Biology, 2022, 221, .	2.3	27
90	Meta-analysis of global metabolomic data identifies metabolites associated with life-span extension. Metabolomics, 2014, 10, 737-743.	1.4	24

#	Article	IF	CITATIONS
91	Metabolite Induction of <i>Caenorhabditis elegans</i> Dauer Larvae Arises via Transport in the Pharynx. ACS Chemical Biology, 2008, 3, 294-304.	1.6	23
92	Identification and Characterization of Mitochondrial Subtypes in <i>Caenorhabditis elegans</i> via Analysis of Individual Mitochondria by Flow Cytometry. Analytical Chemistry, 2016, 88, 6309-6316.	3.2	23
93	Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7710-E7719.	3.3	23
94	On the origin of a silencer. Trends in Biochemical Sciences, 1995, 20, 231-235.	3.7	21
95	Measurements of Physiological Stress Responses in C. Elegans . Journal of Visualized Experiments, 2020, , .	0.2	21
96	SMK-1/PPH-4.1–mediated silencing of the CHK-1 response to DNA damage in early C. elegans embryos. Journal of Cell Biology, 2007, 179, 41-52.	2.3	20
97	Lysosomal recycling of amino acids affects ER quality control. Science Advances, 2020, 6, eaaz9805.	4.7	19
98	MAPping innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12781-12782.	3.3	16
99	"High-Throughput Characterization of Region-Specific Mitochondrial Function and Morphology― Scientific Reports, 2017, 7, 6749.	1.6	16
100	The disposable soma theory of aging in reverse. Cell Research, 2014, 24, 7-8.	5.7	14
101	Protein homeostasis from the outside in. Nature Cell Biology, 2020, 22, 911-912.	4.6	10
102	Mitochondria and Aging: Dilution Is the Solution. Cell Metabolism, 2007, 6, 427-429.	7.2	9
103	Beneficial miscommunication. Nature, 2013, 497, 442-443.	13.7	7
104	Cell-Nonautonomous Control of the UPR: Mastering Energy Homeostasis. Cell Metabolism, 2014, 20, 385-387.	7.2	7
105	Vive ut Numquam Moriturus: Tweaking Translational Control to Regulate Longevity. Molecular Cell, 2019, 73, 643-644.	4.5	7
106	Measuring expression heterogeneity of single-cell cytoskeletal protein complexes. Nature Communications, 2021, 12, 4969.	5.8	6
107	Aging alters the metabolic flux signature of the ERâ€unfolded protein response in vivo in mice. Aging Cell, 2022, 21, e13558.	3.0	6
108	PPTR-1 CounterAkts Insulin Signaling. Cell, 2009, 136, 816-818.	13.5	5

#	Article	IF	CITATIONS
109	Cross-species screening platforms identify EPS-8 as a critical link for mitochondrial stress and actin stabilization. Science Advances, 2021, 7, eabj6818.	4.7	5
110	ER Unfolded Protein Response in Liver In Vivo Is Characterized by Reduced, Not Increased, De Novo Lipogenesis and Cholesterol Synthesis Rates with Uptake of Fatty Acids from Adipose Tissue: Integrated Gene Expression, Translation Rates and Metabolic Fluxes. International Journal of Molecular Sciences, 2022, 23, 1073.	1.8	3
111	Profile of Kazutoshi Mori and Peter Walter, 2014 Lasker Basic Medical Research Awardees: The unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17696-17697.	3.3	2
112	The Lysosome, Elixir of Neural Stem Cell Youth. Cell Stem Cell, 2018, 22, 619-620.	5.2	2
113	Evolutionary Comeuppance: Mitochondrial Stress Awakens the Remnants of Ancient Bacterial Warfare. Cell Metabolism, 2019, 29, 1015-1017.	7.2	2
114	SMK-1/PPH-4.1–mediated silencing of the CHK-1 response to DNA damage in early C. elegans embryos. Journal of Cell Biology, 2010, 189, 1187-1187.	2.3	1
115	Metabolism, Mitochondrial Stress, and Aging: How Neuroendocrine Signaling Coordinates Metabolic State in Aging and Neurodegenerative Disease Models. American Journal of Geriatric Psychiatry, 2016, 24, S73-S74.	0.6	1
116	Mitochondrial Subtype Identification and Characterization. Current Protocols in Cytometry, 2018, 85, e41.	3.7	1
117	SMK-1/PPH-4.1–mediated silencing of the CHK-1 response to DNA damage in early C. elegans embryos. Journal of Cell Biology, 2009, 184, 613-613.	2.3	0
118	SIP-ing the Elixir of Youth. Cell, 2011, 146, 859-860.	13.5	0
119	Brains and brawn: Stress-induced myokine abates nervous system aging. Cell Metabolism, 2021, 33, 1067-1069.	7.2	0
120	Connecting mechanism of proteotoxicity: from worm to mouse. FASEB Journal, 2009, 23, LB213.	0.2	0