Tianhong Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949788/publications.pdf

Version: 2024-02-01

239 papers 4,734 citations

94269 37 h-index 61 g-index

239 all docs 239 does citations

times ranked

239

5790 citing authors

#	Article	IF	CITATIONS
1	Micromachining of SrTiO3steps for high-Tcstep edge junction dc SQUIDs. Journal of Micromechanics and Microengineering, 2004, 14, 1-5.	1.5	321
2	Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light: Science and Applications, 2018, 7, 17134-17134.	7.7	292
3	All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electronics, 2003, 47, 1543-1548.	0.8	146
4	Patterning of Layer-by-Layer Self-Assembled Multiple Types of Nanoparticle Thin Films by Lithographic Technique. Nano Letters, 2002, 2, 1219-1222.	4.5	135
5	An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Applied Physics Letters, 2011, 98, 073116.	1.5	135
6	Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis. Sensors, 2009, 9, 1714-1721.	2.1	112
7	Ultrathin Cantilevers Based on Polymerâ°Ceramic Nanocomposite Assembled through Layer-by-Layer Adsorption. Nano Letters, 2004, 4, 823-825.	4.5	111
8	Carbon nanotube-based transparent thin film acoustic actuators and sensors. Sensors and Actuators A: Physical, 2006, 132, 626-631.	2.0	110
9	All-polymer RC filter circuits fabricated with inkjet printing technology. Solid-State Electronics, 2003, 47, 841-847.	0.8	103
10	Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosensors and Bioelectronics, 2010, 25, 2259-2264.	5.3	99
11	Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nature Communications, 2020, 11, 6185.	5.8	93
12	Carbon nanotube electric immunoassay for the detection of swine influenza virus H1N1. Biosensors and Bioelectronics, 2011, 26, 3482-3487.	5.3	82
13	Enhanced heat transfer of heat sink channels with micro pin fin roughened walls. International Journal of Heat and Mass Transfer, 2016, 92, 617-627.	2.5	79
14	Lithographic Approach to Pattern Self-Assembled Nanoparticle Multilayers. Langmuir, 2002, 18, 6712-6715.	1.6	76
15	Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique. Journal of Micromechanics and Microengineering, 2003, 13, 430-435.	1.5	70
16	Wireless LTCC-based capacitive pressure sensor for harsh environment. Sensors and Actuators A: Physical, 2013, 197, 30-37.	2.0	68
17	Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Biosensors and Bioelectronics, 2015, 72, 168-174.	5.3	68
18	Low-Voltage All-Polymer Field-Effect Transistor Fabricated Using an Inkjet Printing Technique. Macromolecular Rapid Communications, 2005, 26, 1955-1959.	2.0	63

#	Article	IF	Citations
19	Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation. Light: Science and Applications, 2020, 9, 80.	7.7	63
20	Fabrication and electrical characteristics of polymer-based Schottky diode. Solid-State Electronics, 2003, 47, 691-694.	0.8	61
21	Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings. Langmuir, 2011, 27, 9295-9301.	1.6	57
22	Fabrication of carbon nanotube based transparent conductive thin films using layer-by-layer technology. Surface and Coatings Technology, 2008, 202, 2002-2007.	2.2	55
23	Bone formation on carbon nanotube composite. Journal of Biomedical Materials Research - Part A, 2011, 96A, 75-82.	2.1	55
24	Ultra-sensitive suspended graphene nanocomposite cancer sensors with strong suppression of electrical noise. Biosensors and Bioelectronics, 2012, 31, 105-109.	5.3	55
25	High frequency, large displacement, and low power consumption piezoelectric translational actuator based on an oval loop shell. Sensors and Actuators A: Physical, 2012, 176, 99-109.	2.0	53
26	A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles. Sensors and Actuators B: Chemical, 2008, 134, 981-987.	4.0	51
27	Graphene fixed-end beam arrays based on mechanical exfoliation. Applied Physics Letters, 2011, 98, .	1.5	49
28	A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 12436-12442.	5.2	49
29	High-mobility transistors based on nanoassembled carbon nanotube semiconducting layer and SiO2 nanoparticle dielectric layer. Applied Physics Letters, 2006, 89, 163512.	1.5	48
30	Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. Nanophotonics, 2019, 8, 869-878.	2.9	47
31	Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films. Nanotechnology, 2007, 18, 145709.	1.3	46
32	Graphene cantilever beams for nano switches. Applied Physics Letters, 2012, 101, 093111.	1.5	46
33	Superhydrophilic surface modification of copper surfaces by Layer-by-Layer self-assembly and Liquid Phase Deposition of TiO2 thin film. Journal of Colloid and Interface Science, 2011, 354, 1-6.	5.0	43
34	Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosensors and Bioelectronics, 2020, 167, 112473.	5.3	43
35	lon-sensitive field-effect transistor based pH sensors using nano self-assembled polyelectrolyte/nanoparticle multilayer films. Sensors and Actuators B: Chemical, 2007, 123, 148-152.	4.0	41
36	Thermal stress analyses of multilayered films on substrates and cantilever beams for micro sensors and actuators. Journal of Micromechanics and Microengineering, 2006, 16, 2509-2515.	1.5	40

#	Article	IF	Citations
37	Humidity Sensitivity of Carbon Nanotube and Poly (Dimethyldiallylammonium Chloride) Composite Films. IEEE Sensors Journal, 2009, 9, 1308-1314.	2.4	40
38	Carbon Nanotube Based Transparent Conductive Thin Films. Journal of Nanoscience and Nanotechnology, 2006, 6, 1939-1944.	0.9	39
39	p H -dependent conductance behaviors of layer-by-layer self-assembled carboxylated carbon nanotube multilayer thin-film sensors. Journal of Vacuum Science & Technology B, 2009, 27, 842-848.	1.3	37
40	Carbon nanotube based sensors for the detection of viruses. Sensors and Actuators B: Chemical, 2011, 155, 67-74.	4.0	36
41	Enhancing heat transfer in air-cooled heat sinks using piezoelectrically-driven agitators and synthetic jets. International Journal of Heat and Mass Transfer, 2014, 68, 184-193.	2.5	36
42	Layer-by-Layer Self-Assembled Single-Walled Carbon Nanotubes Based Ion-Sensitive Conductometric Glucose Biosensors. IEEE Sensors Journal, 2009, 9, 449-456.	2.4	35
43	Sensitivity enhancement of a resonant mass sensor based on internal resonance. Applied Physics Letters, 2018, 113, .	1.5	35
44	Heat transfer enhancement of air-cooled heat sink channel using a piezoelectric synthetic jet array. International Journal of Heat and Mass Transfer, 2019, 143, 118484.	2.5	35
45	Fabrication and characterization of metalÂoxideÂsemiconductor capacitor based on layer-by-layer self-assembled thin films. Nanotechnology, 2003, 14, 453-457.	1.3	32
46	Well-aligned and suspended single-walled carbon nanotube film: Directed self-assembly, patterning, and characterization. Applied Physics Letters, 2009, 94, .	1.5	32
47	Hybrid superhydrophilic–superhydrophobic micro/nanostructures fabricated by femtosecond laser-induced forward transfer for sub-femtomolar Raman detection. Microsystems and Nanoengineering, 2019, 5, 48.	3.4	32
48	Layer-by-Layer Self-Assembly of Single-Walled Carbon Nanotubes with Amine-Functionalized Weak Polyelectrolytes for Electrochemically Tunable pH Sensitivity. Langmuir, 2011, 27, 3348-3354.	1.6	29
49	Multifunctional 3D Micro-Nanostructures Fabricated through Temporally Shaped Femtosecond Laser Processing for Preventing Thrombosis and Bacterial Infection. ACS Applied Materials & Diterfaces, 2020, 12, 17155-17166.	4.0	28
50	Recent Progress of Biomarker Detection Sensors. Research, 2020, 2020, 7949037.	2.8	28
51	FET Fabricated by Layer-by-Layer Nanoassembly. IEEE Transactions on Electron Devices, 2004, 51, 503-506.	1.6	27
52	Polymer-Based Rectifying Diodes on a Glass Substrate Fabricated by Ink-Jet Printing. Macromolecular Rapid Communications, 2005, 26, 289-292.	2.0	26
53	Comparison of Selective Attachment and Growth of Smooth Muscle Cells on Gelatin- and Fibronectin-Coated Micropatterns. Journal of Nanoscience and Nanotechnology, 2005, 5, 1809-1815.	0.9	26
54	Flexible and disposable immunosensors based on layer-by-layer self-assembled carbon nanotubes and biomolecules. Sensors and Actuators A: Physical, 2009, 150, 280-285.	2.0	26

#	Article	IF	Citations
55	Acetylcholine biosensors based on layer-by-layer self-assembled polymer/nanoparticle ion-sensitive field-effect transistors. Sensors and Actuators A: Physical, 2007, 136, 540-545.	2.0	24
56	Piezoelectric translational agitation for enhancing forced-convection channel-flow heat transfer. International Journal of Heat and Mass Transfer, 2012, 55, 7398-7409.	2.5	23
57	A parametric study of heat transfer in an air-cooled heat sink enhanced by actuated plates. International Journal of Heat and Mass Transfer, 2013, 64, 792-801.	2.5	23
58	Mixed-potential-type NO2 sensors based on stabilized zirconia and CeO2-B2O3 (B = Fe, Cr) binary nanocomposites sensing electrodes. Sensors and Actuators B: Chemical, 2018, 266, 793-804.	4.0	23
59	A highly sensitive photoelectrochemical sensor with polarity-switchable photocurrent for detection of trace hexavalent chromium. Sensors and Actuators B: Chemical, 2020, 317, 128181.	4.0	23
60	Carbon nanotube thin film pH electrode for potentiometric enzymatic acetylcholine biosensing. Microelectronic Engineering, 2012, 93, 39-42.	1.1	22
61	Carbon nanotube micropatterns and cantilever arrays fabricated with layer-by-layer nano self-assembly. Sensors and Actuators A: Physical, 2007, 136, 510-517.	2.0	21
62	A self-pumping and self-breathing micro direct methanol fuel cell with polymer bipolar plates. Journal of Power Sources, 2011, 196, 7533-7540.	4.0	21
63	Adhesion energy of few layer graphene characterized by atomic force microscope. Sensors and Actuators A: Physical, 2014, 217, 56-61.	2.0	21
64	High performance mixed-potential-type Zirconia-based NO 2 sensor with self-organizing surface structures fabricated by low energy ion beam etching. Sensors and Actuators B: Chemical, 2018, 263, 445-451.	4.0	21
65	Field-effect transistors with layer-by-layer self-assembled nanoparticle thin films as channel and gate dielectric. Applied Physics Letters, 2005, 87, 183105.	1.5	20
66	High-perfermance and low-cost ion sensitive sensor array based on self-assembled graphene. Sensors and Actuators A: Physical, 2012, 177, 110-114.	2.0	20
67	A High-Resolution Amperometric Acetylcholine Sensor Based on Nano-Assembled Carbon Nanotube and Acetylcholinesterase Thin Films. Journal of Nano Research, 2008, 1, 1-9.	0.8	19
68	Theoretical analysis of the sensing and actuating effects of piezoelectric multimorph cantilevers. Microsystem Technologies, 2006, 12, 335-342.	1.2	18
69	Electrical and electromechanical characteristics of self-assembled carbon nanotube thin films on flexible substrates. Sensors and Actuators A: Physical, 2008, 145-146, 330-335.	2.0	18
70	A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array. Sensors, 2011, 11, 9300-9312.	2.1	18
71	Hot embossing at viscous state to enhance filling process for complex polymer structures. Microsystem Technologies, 2012, 18, 257-265.	1,2	18
72	High-performance perovskite solar cells fabricated by vapor deposition with optimized Pbl ₂ precursor films. RSC Advances, 2015, 5, 95847-95853.	1.7	18

#	Article	IF	Citations
73	Tunable mechanical properties of layer-by-layer self-assembled carbon nanotube/polymer nanocomposite membranes for M/NEMS. Sensors and Actuators A: Physical, 2012, 185, 101-108.	2.0	17
74	Suspended Graphene Nanoribbon Ion-Sensitive Field-Effect Transistors Formed by Shrink Lithography for pH/Cancer Biomarker Sensing. Journal of Microelectromechanical Systems, 2013, 22, 1140-1146.	1.7	17
75	Single-crystalline monolayer and multilayer graphene nano switches. Applied Physics Letters, 2014, 104,	1.5	17
76	TiO2 and shrink induced tunable nano self-assembled graphene composites for label free biosensors. Sensors and Actuators B: Chemical, 2015, 216, 337-342.	4.0	17
77	High-frequency translational agitation with micro pin-fin surfaces for enhancing heat transfer of forced convection. International Journal of Heat and Mass Transfer, 2016, 94, 354-365.	2.5	17
78	Active heat sink with piezoelectric translational agitators, piezoelectric synthetic jets, and micro pin fin arrays. Experimental Thermal and Fluid Science, 2018, 99, 190-199.	1.5	17
79	Flexible Electrochemical Sensor With Graphene and Gold Nanoparticles to Detect Dopamine and Uric Acid. IEEE Sensors Journal, 2021, 21, 26556-26565.	2.4	17
80	Micro catalytic methane sensors based on 3D quartz structures with cone-shaped cavities etched by high-resolution abrasive sand blasting. Sensors and Actuators A: Physical, 2016, 242, 9-17.	2.0	16
81	Self-assembled graphene and copper nanoparticles composite sensor for nitrate determination. Microsystem Technologies, 2018, 24, 3623-3630.	1.2	16
82	A polymer-based bidirectional micropump driven by a PZT bimorph. Microsystem Technologies, 2011, 17, 403-409.	1,2	15
83	Piezoelectric thin films formed by MOD on cantilever beams for micro sensors and actuators. Microsystem Technologies, 2004, 10, 137-141.	1.2	14
84	Active Control of Sound Transmission Through Windows With Carbon Nanotube-Based Transparent Actuators. IEEE Transactions on Control Systems Technology, 2007, 15, 704-714.	3.2	14
85	Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness. Japanese Journal of Applied Physics, 2018, 57, 052301.	0.8	14
86	Femtosecond Laser Induced Phase Transformation of TiO ₂ with Exposed Reactive Facets for Improved Photoelectrochemistry Performance. ACS Applied Materials & Emp; Interfaces, 2020, 12, 41250-41258.	4.0	14
87	Suspended carbon nanotube nanocomposite beams with a high mechanical strength via layer-by-layer nano-self-assembly. Nanotechnology, 2011, 22, 165601.	1.3	13
88	Shrink induced nanostructures for energy conversion efficiency enhancement in photovoltaic devices. Applied Physics Letters, 2013, 103, 023104.	1.5	12
89	Molybdenum disulfide dc contact MEMS shunt switch. Journal of Micromechanics and Microengineering, 2013, 23, 045026.	1.5	12
90	Heat transfer augmentation of a channel flow by active agitation and surface mounted cylindrical pin fins. International Journal of Heat and Mass Transfer, 2015, 87, 557-567.	2.5	12

#	Article	IF	CITATIONS
91	Progress of shrink polymer micro- and nanomanufacturing. Microsystems and Nanoengineering, 2021, 7, 88.	3.4	12
92	Polymer-based wide-bandwidth and high-sensitivity micromachined electron tunneling accelerometers using hot embossing. Journal of Microelectromechanical Systems, 2005, 14, 895-902.	1.7	11
93	Low-cost shrink lithography with sub-22 nm resolution. Applied Physics Letters, 2012, 100, 133113.	1.5	11
94	Polymer shrinkage of hot embossed microstructures for higher aspect ratio and smaller size. Sensors and Actuators A: Physical, 2013, 195, 21-26.	2.0	11
95	Ultrasensitive micro ion selective sensor arrays for multiplex heavy metal ions detection. Microsystem Technologies, 2019, 25, 845-849.	1.2	11
96	Fabrication of 3-D Gelatin-Patterned Glass Substrates With Layer-by-Layer and Lift-Off (LbL–LO) Technology. IEEE Nanotechnology Magazine, 2004, 3, 115-123.	1.1	10
97	Thin-film transistors with controllable mobilities based on layer-by-layer self-assembled carbon nanotube composites. Solid-State Electronics, 2009, 53, 1050-1055.	0.8	10
98	Micro fuel cell utilizing fuel cell water recovery and pneumatic valve. Journal of Power Sources, 2013, 240, 1-7.	4.0	10
99	Fabrication of polymer via holes by a combination of hot embossing and indentation processes. Journal of Micromechanics and Microengineering, 2011, 21, 045032.	1.5	9
100	Convective Heat Transfer Enhancement on a Channel Wall With a High Frequency, Oscillating Agitator. , $2011,\ldots$		9
101	Modeling and Design of Polymer-Based Tunneling Accelerometers by ANSYS/MATLAB. IEEE/ASME Transactions on Mechatronics, 2005, 10, 468-472.	3.7	8
102	Raman spectrum method for characterization of pull-in voltages of graphene capacitive shunt switches. Applied Physics Letters, 2012, 101, 263103.	1.5	8
103	Suspended and highly aligned carbon nanotube thin-film structures using open microfluidic channel template. Sensors and Actuators A: Physical, 2012, 188, 434-441.	2.0	8
104	A role of silica nanoparticles in layer-by-layer self-assembled carbon nanotube and In2O3 nanoparticle thin-film pH sensors: Tunable sensitivity and linearity. Sensors and Actuators A: Physical, 2012, 188, 203-211.	2.0	8
105	Nafion coated flexible bismuth sensor for trace lead and cadmium determination. Microsystem Technologies, 2018, 24, 3697-3704.	1.2	8
106	lon sensitive field effect transistor based on graphene and ionophore hybrid membrane for phosphate detection. Microsystem Technologies, 2019, 25, 3357-3364.	1,2	8
107	Shrink-induced ultrasensitive mercury sensor with graphene and gold nanoparticles self-assembly. Microsystem Technologies, 2019, 25, 11-17.	1.2	8
108	Interdiffusion Stomatal Movement in Efficient Multiple-Cation-Based Perovskite Solar Cells. ACS Applied Materials & Discrete Solar Cells. ACS Applied Materials	4.0	8

#	Article	IF	Citations
109	A pure single-walled carbon nanotube thin film based three-terminal microelectromechanical switch. Applied Physics Letters, 2011, 98, 073502.	1.5	7
110	The effects of hydride chemistry, particle size, and void fraction onÂmicro fuel cell performance. Journal of Power Sources, 2013, 243, 562-568.	4.0	7
111	Numerical simulation and analysis of hybrid physical-chemical vapor deposition to grow uniform perovskite MAPbI3. Journal of Applied Physics, 2017, 121, .	1.1	7
112	Stress and Deformation of Pzt Thin Film on Silicon Wafer Due to Thermal Expansion. Materials Research Society Symposia Proceedings, 1999, 574, 107.	0.1	6
113	Tunable wetting properties of patterned silicon microchannels with varied surface free energy based on layer-by-layer nano self-assembly. Journal of Micromechanics and Microengineering, 2011, 21, 045015.	1.5	6
114	Flexible Mixed-Potential-Type (MPT) NO2 Sensor Based on An Ultra-Thin Ceramic Film. Sensors, 2017, 17, 1740.	2.1	6
115	Shrink-Induced Microelectrode Arrays for Trace Mercury Ions Detection. IEEE Sensors Journal, 2019, 19, 2435-2441.	2.4	6
116	Solution-gated nitrate sensitive field effect transistor with hybrid film: CVD graphene/polymer selective membrane. Organic Electronics, 2020, 78, 105551.	1.4	6
117	An experimental and numerical study on heat transfer enhancement of a heat sink fin by synthetic jet impingement. Heat and Mass Transfer, 2021, 57, 583-593.	1.2	6
118	Simulation and Experiments on a Valveless Micropump With Fluidic Diodes Based on Topology Optimization. Journal of Microelectromechanical Systems, 2022, 31, 292-297.	1.7	6
119	Design, simulation, fabrication, and characterization of a PMMA tunneling sensor based on hot embossing technique. Microsystem Technologies, 2005, 11, 452-455.	1.2	5
120	Power consumption analysis of surface acoustic wave sensor systems using ANSYS and PSPICE. Microsystem Technologies, 2006, 13, 97-101.	1.2	5
121	Piezoelectric Microcantilevers with Two PZT Thin-Film Elements for Microsensors and Microactuators. , 2006, , .		5
122	Deposition and characterization of Pb(Zr,Ti)O3sol–gel thin films for piezoelectric cantilever beams. Smart Materials and Structures, 2007, 16, 93-99.	1.8	5
123	Thermally enhanced single-walled carbon nanotube microfluidic alignment. Microelectronic Engineering, 2011, 88, 2919-2923.	1.1	5
124	An Active Heat Sink System With Piezoelectric Translational Agitators and Micro Pin Fin Arrays. , 2012, , .		5
125	A quartz-based micro catalytic methane sensor by high resolution screen printing. Journal of Micromechanics and Microengineering, 2016, 26, 025021.	1.5	5
126	Trace Determination of Arsenite With an Ionophore-Coated Selective Micro Sensor. IEEE Sensors Journal, 2018, 18, 4364-4371.	2.4	5

#	Article	IF	Citations
127	Graphene-Based Ion Sensitive-FET Sensor With Porous Anodic Aluminum Oxide Substrate for Nitrate Detection. Journal of Microelectromechanical Systems, 2020, 29, 966-971.	1.7	5
128	Graphene-based temperature sensors suspended by anodic aluminum oxide. Journal of Chemical Physics, 2020, 153, 084701.	1.2	5
129	Glucose Biosensors Based on Layer-by-Layer Nano Self-Assembled Ion-Sensitive Field-Effect Transistors. Sensor Letters, 2006, 4, 241-245.	0.4	5
130	Micro Tactile Sensors with a Suspended and Oriented Single Walled Carbon Nanotube Beam Embedded in Polydimethylsiloxane Elastomer. Sensor Letters, 2010, 8, 639-644.	0.4	5
131	Fabrication and Characterization of Polymeric P-Channel Junction FETs. IEEE Transactions on Electron Devices, 2004, 51, 389-393.	1.6	4
132	Silica Nanowires Fabricated with Layer-by-Layer Self-Assembled Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 1019-1023.	0.9	4
133	Enhancing Heat Transfer of Air-Cooled Heat Sinks Using Piezoelectrically-Driven Agitators and Synthetic Jets. , $2011, , .$		4
134	A Polymeric Piezoelectric Synthetic Jet for Electronic Cooling. , 2011, , .		4
135	An electric detection of immunoglobulin G in the enzyme-linked immunosorbent assay using an indium oxide nanoparticle ion-sensitive field-effect transistor. Journal of Micromechanics and Microengineering, 2012, 22, 015009.	1.5	4
136	Convective Heat Transfer Enhancement With Micro Pin-Fin Surfaces Cooled by a Piezoelectrically-Driven Translational Agitator. , 2012, , .		4
137	RF nano switch based on single crystalline graphene. , 2015, , .		4
138	An ultrasensitive mercury sensor based on self-assembled graphene and gold nanoparticles on shrink polymer. , 2017, , .		4
139	Self-Assembled Carbon Nanotube Multilayer Resistors and Nanotube/Nanoparticle Thin-Film Transistors as pH Sensors. Sensor Letters, 2008, 6, 675-681.	0.4	4
140	Polymer Magnetic Microactuators Fabricated with Hot Embossing and Layer-by-Layer Nano Self-Assembly. Journal of Nanoscience and Nanotechnology, 2007, 7, 2647-2653.	0.9	3
141	Aligned dense single-walled carbon nanotube beams and cantilevers for nanoelectromechanical systems applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 522-526.	0.6	3
142	Characterization of carbon nanotube nanoswitches with gigahertz resonance frequency and low pull-in voltages using electrostatic force microscopy. Journal of Micromechanics and Microengineering, 2010, 20, 105016.	1.5	3
143	High-performance surface-tension-driven capillary pumping based on layer-by-layer self assembly of TiO<inf>2</inf> nanoparticles. , $2011, \dots$		3
144	A flexible tri-axis contact force sensor for tubular medical device applications. Journal of Micromechanics and Microengineering, 2011, 21, 035004.	1.5	3

#	Article	IF	Citations
145	Microfabrication of short pin fins on heat sink surfaces to augment heat transfer performance. , 2012, ,		3
146	Tunable shrink induced graphene composites for chemical sensors and microfluidics. , 2012, , .		3
147	Prospect of Light: Science & Applications. Light: Science and Applications, 2014, 3, e128-e128.	7.7	3
148	Wafer-size free-standing single-crystalline graphene device arrays. Applied Physics Letters, 2014, 105, .	1.5	3
149	High Crystalline Quality Perovskite Thin Films Prepared by a Novel Hybrid Evaporation/CVD Technique. Materials Research Society Symposia Proceedings, 2015, 1771, 187-192.	0.1	3
150	A low-cost and label-free alpha-fetoprotein sensor based on self-assembled graphene on shrink polymer. , 2015, , .		3
151	An experimental study on the effects of agitation on convective heat transfer. International Journal of Heat and Mass Transfer, 2015, 90, 302-313.	2.5	3
152	Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay. Frontiers of Mechanical Engineering, 2017, 12, 574-580.	2.5	3
153	Control of Pbi2 nucleation and crystallization: towards efficient perovskite solar cells based on vapor-assisted solution process. Materials Research Express, 2018, 5, 045507.	0.8	3
154	Terahertz wave manipulation through coupling of spoof plasmonics and Fabry–Perot resonance. Journal Physics D: Applied Physics, 2018, 51, 405101.	1.3	3
155	A vibrating membrane working electrode for highly sensitive anodic stripping voltammetry. Sensors and Actuators B: Chemical, 2020, 311, 127948.	4.0	3
156	High-Performance Perovskite Solar Cells Fabricated by a Hybrid Physical–Chemical Vapor Deposition. Journal of Solar Energy Engineering, Transactions of the ASME, 2021, 143, .	1.1	3
157	Numerical Simulation of Vapor Deposition Process of Perovskite Solar Cells: The Influence of Methylammonium Iodide Vapor Flow to Perovskite Growth. Journal of Solar Energy Engineering, Transactions of the ASME, 2021, 143, .	1.1	3
158	A micromachined wide-bandwidth magnetic field sensor based on all-PMMA electron tunneling transducer. IEEE Sensors Journal, 2006, 6, 97-105.	2.4	2
159	Functional 1.6 GHZ MEMS switch using aligned composite CNT membrane by dielectrophoretic self-assembly., 2009,,.		2
160	Comparison of Heat Transfer Enhancement by Actuated Plates in Heat-Sink Channels., 2012,,.		2
161	An Experimental Study on the Effects of Agitation in Generating Flow Unsteadiness and Enhancing Convective Heat Transfer. , 2012, , .		2
162	Simulation study of extraordinary optical transmission induced by sub-wavelength nanopore arrays towards label-free biochemical analysis. , 2013, , .		2

#	Article	IF	CITATIONS
163	Application of shrink induced three-dimensional structures to biosensor systems integrated with flexible solar cells. , $2013, \dots$		2
164	Heat Transfer Enhancement of a Heat Sink by Inclined Synthetic Jets for Electronics Cooling. , 2013, , .		2
165	The First Engineering Journal from Nature Publishing Group: Microsystems & Nanoengineering. Microsystems and Nanoengineering, 2015, 1 , .	3.4	2
166	Single-crystalline graphene radio-frequency nanoswitches. Journal of Micromechanics and Microengineering, 2015, 25, 075022.	1.5	2
167	A self-assembled graphene-based micro flow meter by streaming potential effect. , 2017, , .		2
168	Highly sensitive micro sensor with nafion coated bismuth for trace lead determination., 2017,,.		2
169	A Low-Cost Ion Selective Nitrate Sensor Based On Self-Assembled Graphene Microelectrode Arrays. , 2019, , .		2
170	Enhanced photocatalytic efficiency by layer-by- layer self-assembly of graphene and titanium dioxide on shrink thermoplastic film. Microsystem Technologies, 2020, 26, 3793-3798.	1.2	2
171	Fabrication of Integrated Pressure-Flow-Temperature Sensor for Hydraulic Systems. , 2006, , .		2
172	Integrated Pressure-Flow-Temperature Sensor for Hydraulic Systems. , 2005, , .		2
173	Vibrating an air bubble to enhance mass transfer for an ultra-sensitive electrochemical sensor. Sensors and Actuators B: Chemical, 2022, 354, 131218.	4.0	2
174	Nano self-assembly for MEMS and microelectronics applications. , 2006, 6032, 9.		1
175	Active Control of Sound Transmission through Windows with Carbon Nanotube based Transparent Actuators and Moving Noise Source Identification., 2006, , .		1
176	A high-resolution amperometric acetylcholine biosensor based on nano self-assembly of carbon nanotubes. , 2007, , .		1
177	Electrical and Electromechanical Characteristics of Nanoassembled Carbon Nanotube Thin Film Resistors on Flexible Substrates., 2007,,.		1
178	Nano Self-Assembled Nanoparticle Ion-Sensitive Field-Effect Transistors for Acetylcholine Biosensing. , 2007, , .		1
179	Deposition and Characterization of Layer-by-Layer Nano Self-Assembled Carbon Nanotube Multilayer Thin Films. , 2007, , .		1
180	Micro tactile sensors with a suspended and oriented single walled carbon nanotube beam embeded in PDMS elastomer., 2009,,.		1

#	Article	IF	Citations
181	Layer-by-Layer Nano Self-Assembly of pH Sensors Based on Polyelectrolytes and Carboxylated Carbon Nanotubes. ECS Transactions, 2009, 16, 3-9.	0.3	1
182	A 1.6 GHz NEMS actuator built from carbon nanotube layer by layer composite films. , 2009, , .		1
183	Tunable mechanical properties of self-assembled SWNT/polymer nanocomposite films for MEMS. , 2011,		1
184	High-performance and low-cost ion sensitive sensor array based on self-assembled graphene. , $2011, \ldots$		1
185	An Experimental Study on the Effects of Agitation on Forced-Convection Heat Transfer. , $2011, \ldots$		1
186	Enhanced wetting properties of silicon mesh microchannels coated with SiO2/SnO2 nanoparticles through layer-by-layer self assembly. Sensors and Actuators B: Chemical, 2011, 157, 697-702.	4.0	1
187	Microfluidic valves based on TiO < inf > $2 < l$ inf > coating with tunable surface wettability between super hydrophilic and super hydrophobic. , 2011 , , .		1
188	A Computational Study of Active Heat Transfer Enhancement of Air-Cooled Heat Sinks by Actuated Plates. , $2011, , .$		1
189	Study on the wireless transmission performance of the passive pressure sensor., 2011,,.		1
190	Weighted area technique for electromechanically enabled logic computation with cantilever-based NEMS switches. , $2012, , .$		1
191	Fluid Damping and Power Consumption of Active Devices Used in Cooling Electronics. , 2012, , .		1
192	Development of Synthetic Jet Arrays for Heat Transfer Enhancement in Air-Cooled Heat Sinks for Electronics Cooling. , 2012 , , .		1
193	Noise Measurements and Reduction for High-Frequency Vibrating Devices in the Application of Cooling Electronics. , 2012, , .		1
194	Controllable fabrication and electromechanical characterization of electrophoresis assembled single-walled carbon nanotube-polymer film transducers. Microsystem Technologies, 2013, 19, 1041-1047.	1.2	1
195	Effects of Channel Aspect Ratio on Convective Heat Transfer in an Electronics Cooling Heat Sink Having Agitation and Fan-Induced Throughflow. , 2013, , .		1
196	Low-Cost Chemical Sensors Based on Shrink Polymer Microfluidics., 2013,,.		1
197	Micro catalytic methane sensor on bulk quartz substrate. , 2015, , .		1
198	One-year anniversary: The progress of Microsystems & Nanoengineering. Microsystems and Nanoengineering, 2016, 2, 16046.	3.4	1

#	Article	IF	CITATIONS
199	Highly selective sensor for trace asenite determination using anodic stripping voltammetry., 2016,,.		1
200	Biosensor Based on Layer by Layer Deposited Phosphorene Nanoparticles for Liver Cancer Detection. , 2017, , .		1
201	Solution-Gated Ion-Sensitive Field Effect Transistor With Polymer Selective Membrane for Nitrate Detection. , $2018, , .$		1
202	Shrink-Induced Highly Sensitive Dopamine Sensor Based On Self-Assembly Graphene on Microelectrode. , 2019, , .		1
203	Simulation on biomarker sensor miniaturization based on metamaterial. Modern Physics Letters B, 2019, 33, 1950135.	1.0	1
204	Implantable Microelectrode Arrays for Epileptiform Electrical Signals Detection in the Awake Epileptic Mice. , $2019, , .$		1
205	A Non-Enzymatic Electrochemical Sensor Using a Wrinkled Gold Film on Shrink Polymer. IEEE Sensors Journal, 2021, 21, 5711-5719.	2.4	1
206	A Circular Vibrating Electrode with Enhanced Mass Transfer for High-Performance Electrochemical Sensors. , $2021, , .$		1
207	A Fluidic Diode and Its Application to a Valveless Micropump. , 2021, , .		1
208	Synthesis of Ultra-Thin Superhydrophilic Titanium Oxide Film and its Effects on the Capillary of Microchannels. , $2010, , .$		1
209	Fabrication and Characterization of the Piezoelectric Microcantilever Integrated with PZT Thin-Film Microforce Sensor and Actuator., 2007,,.		0
210	Flexible and disposable immunosensors based on layer-bylayer self-assembled carbon nanotubes and biomolecules. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	0
211	Wetting Properties of Patterned Silicon Microchannels With Tunable Surface Energy Using Layer-by-Layer Nano Self-Assembly. , 2009, , .		0
212	Wetting properties of silicon mesh microchannels coated with SiO <inf>2</inf> /SnO <inf>2</inf> nanoparticles using layer-by-layer nano self assembly. , 2009, , .		0
213	Carbon Nanotubes Swine Influenza (H1N1) Virus Sensors. , 2010, , .		0
214	Enhanced dynamic electromechanical properties of electrophoresis assembled carbon nanotube-polymer piezoelectric transducers., 2011,,.		0
215	A three-terminal single-walled carbon nanotube thin film MEMS switch for digital logic applications. , $2011,\ldots$		0
216	Tunable sensitivity and linearity of self-assembled carbon nanotube composite based pH biosensors using silica nanoparticles. , $2011, \ldots$		0

#	Article	IF	CITATIONS
217	Suspended carbon nanotube thin film structures with high degree of alignment for NEMS switch applications. , $2011, \ldots$		O
218	Heat Transfer Enhancement by Synthetic Jet Arrays in Air-Cooled Heat Sinks for Use in Electronics Cooling. , 2012, , .		0
219	Low-cost and flexible VEGF sensors based on microfluidic induced tunable graphene films. , 2013, , .		O
220	On the road: the progress of Light: Science & Applications. Light: Science and Applications, 2013, 2, e49-e49.	7.7	0
221	Improved performance of self-assembled graphene biosensors integrated with shrink-induced tunable morphology of silver nanoparticles. , 2013, , .		0
222	Piezoelectric Synthetic Jet Integrated With Heat Sink for Heat Transfer Enhancement., 2013, , .		0
223	Low-cost and high-performance micro-channel integrated biosensor systems. , 2014, , .		0
224	The Effects of Agitator Blade Geometry and Configuration for Augmenting Heat Transfer by Agitation in Channel Flows. , 2014, , .		0
225	$\label{thm:composites} TiO < inf > 2 < / inf > and shrink induced tunable graphene composites based on nano self assembly for biosensors. , 2014, , .$		0
226	Unsteady Heat Flux Measurements in Agitated Channel Flows. , 2015, , .		0
227	High-performance and low-cost lung cancer sensor array based on self-assembled graphene. , 2015, , .		0
228	Elapsed time of light: science & applications. Light: Science and Applications, 2016, 5, e16021-e16021.	7.7	0
229	Ultrasensitive micro sensor based on layer-by-layer self-assembled graphene and bismuth nanoparticles for trace lead ions determination. , 2017, , .		O
230	Overseas offices: a new attempt to disseminate Light. Light: Science and Applications, 2017, 6, e16230-e16230.	7.7	0
231	Facile Fabrication of a Shrink-Induced Ultrasensitive Microelectrode Arrays Modified with Graphene /BI Nanoparticles Film for Trace Lead Ions Detection. , 2019, , .		0
232	Formaldehyde Gas Sensor Based on Hybrid Film: Graphene/Enzyme. , 2019, , .		0
233	Photocurrent amplification of graphene intercalation with titanium dioxide in photoelectrochemical devices. Sensors and Actuators A: Physical, 2020, 305, 111906.	2.0	0
234	Highly Sensitive Sensor Based on Graphene and Gold Nanoparticles for Dopamine Selective Detection. , 2021, , .		0

Tianhong Cui

#	Article	IF	CITATIONS
235	Organic Field-Effect Transistors Containing a SiO ₂ Nanoparticle Thin Film as the Gate Dielectric. Journal of Nanoscience and Nanotechnology, 2003, 3, 525-528.	0.9	O
236	Fabrication and Characterization of Suspended Single-Walled Carbon Nanotubes Composite Beams. , 2009, , .		0
237	Dynamic characteristic analysis and experiments of flexible structure based on electroactive polymer film. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2012, 20, 2728-2736.	0.2	O
238	Broadband plasmonic-enhanced forward and backward multiplex coherent anti-Stokes Raman scattering microscopy. Optical Engineering, 2018, 57 , 1 .	0.5	0
239	<i>Research:</i> The First Science Partner Journal. Research, 2018, 2018, 1340806.	2.8	0