Boris Striepen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infectious Diseases, The, 2015, 15, 85-94.	9.1	725
2	Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12352-12357.	7.1	691
3	Dynamics of Neutrophil Migration in Lymph Nodes during Infection. Immunity, 2008, 29, 487-496.	14.3	366
4	CD40 induces macrophage anti–Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. Journal of Clinical Investigation, 2006, 116, 2366-2377.	8.2	277
5	Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature, 2015, 523, 477-480.	27.8	267
6	Cell division in apicomplexan parasites. Nature Reviews Microbiology, 2014, 12, 125-136.	28.6	248
7	The Plastid of Toxoplasma gondii Is Divided by Association with the Centrosomes. Journal of Cell Biology, 2000, 151, 1423-1434.	5.2	222
8	A Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential Protein Import Factor. PLoS Pathogens, 2011, 7, e1002392.	4.7	221
9	Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13192-13197.	7.1	216
10	Mitochondrial Metabolism of Glucose and Glutamine Is Required for Intracellular Growth of Toxoplasma gondii. Cell Host and Microbe, 2012, 12, 682-692.	11.0	210
11	Gene transfer in the evolution of parasite nucleotide biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3154-3159.	7.1	195
12	A MORN-repeat protein is a dynamic component of the <i>Toxoplasma gondii</i> cell division apparatus. Journal of Cell Science, 2006, 119, 2236-2245.	2.0	193
13	<i>Toxoplasma gondii</i> Tic20 is essential for apicoplast protein import. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13574-13579.	7.1	189
14	High-Throughput Growth Assay for Toxoplasma gondii Using Yellow Fluorescent Protein. Antimicrobial Agents and Chemotherapy, 2003, 47, 309-316.	3.2	183
15	Parasitic infections: Time to tackle cryptosporidiosis. Nature, 2013, 503, 189-191.	27.8	182
16	Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Molecular and Biochemical Parasitology, 1998, 92, 325-338.	1.1	169
17	Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. Molecular and Biochemical Parasitology, 2001, 115, 165-175.	1.1	167
18	Genetic Evidence that an Endosymbiont-derived Endoplasmic Reticulum-associated Protein Degradation (ERAD) System Functions in Import of Apicoplast Proteins. Journal of Biological Chemistry, 2009, 284, 33683-33691.	3.4	163

#	Article	IF	CITATIONS
19	Daughter Cell Assembly in the Protozoan ParasiteToxoplasma gondii. Molecular Biology of the Cell, 2002, 13, 593-606.	2.1	160
20	A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO Journal, 2001, 20, 330-339.	7.8	154
21	Building the Perfect Parasite: Cell Division in Apicomplexa. PLoS Pathogens, 2007, 3, e78.	4.7	147
22	A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature, 2017, 546, 376-380.	27.8	144
23	The Algal Past and Parasite Present of the Apicoplast. Annual Review of Microbiology, 2013, 67, 271-289.	7.3	142
24	Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in <i>Toxoplasma gondii</i> . Journal of Experimental Medicine, 2011, 208, 1547-1559.	8.5	141
25	Origin, targeting, and function of the apicomplexan plastid. Current Opinion in Microbiology, 1999, 2, 426-432.	5.1	139
26	Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii. Journal of Biological Chemistry, 2012, 287, 4957-4971.	3.4	138
27	Dynamics of T Cell, Antigen-Presenting Cell, and Pathogen Interactions during Recall Responses in the Lymph Node. Immunity, 2009, 31, 342-355.	14.3	128
28	Intraepithelial γδ+ Lymphocytes Maintain the Integrity of Intestinal Epithelial Tight Junctions in Response to Infection. Gastroenterology, 2006, 131, 818-829.	1.3	127
29	Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans. Progress in Lipid Research, 2013, 52, 488-512.	11.6	127
30	Motile invaded neutrophils in the small intestine of <i>Toxoplasma gondii</i> -infected mice reveal a potential mechanism for parasite spread. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1913-22.	7.1	125
31	Genetic complementation in apicomplexan parasites. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6304-6309.	7.1	124
32	A Dynamin Is Required for the Biogenesis of Secretory Organelles in Toxoplasma gondii. Current Biology, 2009, 19, 277-286.	3.9	124
33	Dynamic Imaging of T Cell-Parasite Interactions in the Brains of Mice Chronically Infected with <i>Toxoplasma gondii</i> . Journal of Immunology, 2009, 182, 6379-6393.	0.8	122
34	The Toxoplasma Apicoplast Phosphate Translocator Links Cytosolic and Apicoplast Metabolism and Is Essential for Parasite Survival. Cell Host and Microbe, 2010, 7, 62-73.	11.0	122
35	A Novel Bipartite Centrosome Coordinates the Apicomplexan Cell Cycle. PLoS Biology, 2015, 13, e1002093.	5.6	119
36	Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum. Nature Microbiology, 2019, 4, 2226-2236.	13.3	118

#	Article	IF	CITATIONS
37	Make It or Take It: Fatty Acid Metabolism of Apicomplexan Parasites. Eukaryotic Cell, 2007, 6, 1727-1735.	3.4	117
38	A Novel Dynamin-Related Protein Has Been Recruited for Apicoplast Fission in Toxoplasma gondii. Current Biology, 2009, 19, 267-276.	3.9	116
39	Cell Division in Apicomplexan Parasites Is Organized by a Homolog of the Striated Rootlet Fiber of Algal Flagella. PLoS Biology, 2012, 10, e1001444.	5.6	112
40	Autophagy Protein Atg3 is Essential for Maintaining Mitochondrial Integrity and for Normal Intracellular Development of Toxoplasma gondii Tachyzoites. PLoS Pathogens, 2011, 7, e1002416.	4.7	101
41	Molecular structure of the "low molecular weight antigen―of Toxoplasma gondii: a glucose α1-4 N-acetylgalactosamine makes free glycosyl-phosphatidylinositols highly immunogenic. Journal of Molecular Biology, 1997, 266, 797-813.	4.2	99
42	<i>Toxoplasma gondii</i> sequesters centromeres to a specific nuclear region throughout the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3767-3772.	7.1	98
43	Class I Major Histocompatibility Complex Presentation of Antigens That Escape from the Parasitophorous Vacuole of Toxoplasma gondii. Infection and Immunity, 2005, 73, 703-711.	2.2	96
44	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
45	Targeting of soluble proteins to the rhoptries and micronemes in Toxoplasma gondii. Molecular and Biochemical Parasitology, 2001, 113, 45-53.	1.1	92
46	Cryptosporidium parvum IMP Dehydrogenase. Journal of Biological Chemistry, 2004, 279, 40320-40327.	3.4	91
47	Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrobial Agents and Chemotherapy, 2014, 58, 811-819.	3.2	91
48	Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa. Molecular and Biochemical Parasitology, 2004, 137, 99-110.	1.1	90
49	Forward Genetic Analysis of the Apicomplexan Cell Division Cycle in Toxoplasma gondii. PLoS Pathogens, 2008, 4, e36.	4.7	85
50	Targeting a Prokaryotic Protein in a Eukaryotic Pathogen: Identification of Lead Compounds against Cryptosporidiosis. Chemistry and Biology, 2008, 15, 70-77.	6.0	81
51	A Toxoplasma MORN1 Null Mutant Undergoes Repeated Divisions but Is Defective in Basal Assembly, Apicoplast Division and Cytokinesis. PLoS ONE, 2010, 5, e12302.	2.5	78
52	The intracellular parasite <scp> <i>T</i> </scp> <i>oxoplasma gondii</i> depends on the synthesis of long hain and very longâ€chain unsaturated fatty acids not supplied by the host cell. Molecular Microbiology, 2015, 97, 64-76.	2.5	77
53	Autophagy-Related Protein ATG8 Has a Noncanonical Function for Apicoplast Inheritance in Toxoplasma gondii. MBio, 2015, 6, e01446-15.	4.1	74
54	A Genetically Tractable, Natural Mouse Model of Cryptosporidiosis Offers Insights into Host Protective Immunity. Cell Host and Microbe, 2019, 26, 135-146.e5.	11.0	72

#	Article	IF	CITATIONS
55	Optimization of Benzoxazole-Based Inhibitors of <i>Cryptosporidium parvum</i> Inosine 5′-Monophosphate Dehydrogenase. Journal of Medicinal Chemistry, 2013, 56, 4028-4043.	6.4	71
56	Mining thePlasmodiumgenome database to define organellar function: what does the apicoplast do?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 35-46.	4.0	70
57	Toxoplasma gondii Relies on Both Host and Parasite Isoprenoids and Can Be Rendered Sensitive to Atorvastatin. PLoS Pathogens, 2013, 9, e1003665.	4.7	70
58	The Biology of the Intestinal Intracellular Parasite Cryptosporidium. Cell Host and Microbe, 2020, 28, 509-515.	11.0	68
59	Plastid segregation and cell division in the apicomplexan parasite Sarcocystis neurona. Journal of Cell Science, 2005, 118, 3397-3407.	2.0	65
60	Constitutive Calcium-independent Release of Toxoplasma gondii Dense Granules Occurs through the NSF/SNAP/SNARE/Rab Machinery. Journal of Biological Chemistry, 1999, 274, 2424-2431.	3.4	63
61	An Apicoplast Localized Ubiquitylation System Is Required for the Import of Nuclear-encoded Plastid Proteins. PLoS Pathogens, 2013, 9, e1003426.	4.7	63
62	Tagging Genes and Trapping Promoters inToxoplasma gondiiby Insertional Mutagenesis. Methods, 1997, 13, 112-122.	3.8	56
63	Identification of a sporozoite-specific member of the Toxoplasma SAG superfamily via genetic complementation. Molecular Microbiology, 2004, 52, 93-105.	2.5	56
64	A Screening Pipeline for Antiparasitic Agents Targeting Cryptosporidium Inosine Monophosphate Dehydrogenase. PLoS Neglected Tropical Diseases, 2010, 4, e794.	3.0	56
65	Validation of IMP Dehydrogenase Inhibitors in a Mouse Model of Cryptosporidiosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 1603-1614.	3.2	56
66	The Import of Proteins into the Mitochondrion of Toxoplasma gondii. Journal of Biological Chemistry, 2016, 291, 19335-19350.	3.4	56
67	Tic22 Is an Essential Chaperone Required for Protein Import into the Apicoplast*. Journal of Biological Chemistry, 2012, 287, 39505-39512.	3.4	54
68	An Alveolata secretory machinery adapted to parasite host cell invasion. Nature Microbiology, 2021, 6, 425-434.	13.3	53
69	Bumped-Kinase Inhibitors for Cryptosporidiosis Therapy. Journal of Infectious Diseases, 2017, 215, 1275-1284.	4.0	52
70	Targeting and Processing of Nuclear-encoded Apicoplast Proteins in Plastid Segregation Mutants of Toxoplasma gondii. Journal of Biological Chemistry, 2001, 276, 28436-28442.	3.4	51
71	The cell biology of secondary endosymbiosis ? how parasites build, divide and segregate the apicoplast. Molecular Microbiology, 2006, 61, 1380-1387.	2.5	50
72	Two Essential Light Chains Regulate the MyoA Lever Arm To Promote <i>Toxoplasma</i> Gliding Motility. MBio, 2015, 6, e00845-15.	4.1	49

#	Article	IF	CITATIONS
73	Structure–activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1985-1988.	2.2	47
74	A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nature Communications, 2019, 10, 4041.	12.8	47
75	Genetic ablation of purine salvage in <i>Cryptosporidium parvum</i> reveals nucleotide uptake from the host cell. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21160-21165.	7.1	47
76	Isolation and Characterization of TgVP1, a Type I Vacuolar H+-translocating Pyrophosphatase fromToxoplasma gondii. Journal of Biological Chemistry, 2003, 278, 1075-1085.	3.4	46
77	Expression variance, biochemical and immunological properties of Toxoplasma gondii dense granule protein GRA7. Microbes and Infection, 2002, 4, 581-590.	1.9	45
78	A Requirement for the Vγ1+ Subset of Peripheral γδT Cells in the Control of the Systemic Growth of <i>Toxoplasma gondii</i> and Infection-Induced Pathology. Journal of Immunology, 2005, 175, 8191-8199.	0.8	45
79	Selective and Potent Urea Inhibitors of Cryptosporidium parvum Inosine 5′-Monophosphate Dehydrogenase. Journal of Medicinal Chemistry, 2012, 55, 7759-7771.	6.4	45
80	Bicyclic azetidines kill the diarrheal pathogen <i>Cryptosporidium</i> in mice by inhibiting parasite phenylalanyl-tRNA synthetase. Science Translational Medicine, 2020, 12, .	12.4	45
81	Necessity of Bumped Kinase Inhibitor Gastrointestinal Exposure in Treating Cryptosporidium Infection. Journal of Infectious Diseases, 2017, 216, 55-63.	4.0	44
82	Generating and Maintaining Transgenic <i>Cryptosporidium parvum</i> Parasites. Current Protocols in Microbiology, 2017, 46, 20B.2.1-20B.2.32.	6.5	44
83	In situ ultrastructures of two evolutionarily distant apicomplexan rhoptry secretion systems. Nature Communications, 2021, 12, 4983.	12.8	42
84	cDNA cloning and expression of UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase T1 from Toxoplasma gondii. Molecular and Biochemical Parasitology, 2003, 131, 93-107.	1.1	40
85	Sarcocystis neurona Merozoites Express a Family of Immunogenic Surface Antigens That Are Orthologues of the Toxoplasma gondii Surface Antigens (SAGs) and SAG-Related Sequences. Infection and Immunity, 2005, 73, 1023-1033.	2.2	40
86	Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii. PLoS Pathogens, 2018, 14, e1006836.	4.7	40
87	Update on <i>Cryptosporidium</i> spp.: highlights from the Seventh International <i>Giardia</i> and <i>Cryptosporidium</i> Conference. Parasite, 2020, 27, 14.	2.0	40
88	Genomics meets transgenics in search of the elusive Cryptosporidium drug target. Trends in Parasitology, 2004, 20, 355-358.	3.3	39
89	The intestinal parasite <i>Cryptosporidium</i> is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
90	IMP Dehydrogenase from the Protozoan Parasite Toxoplasma gondii. Antimicrobial Agents and Chemotherapy, 2005, 49, 2172-2179.	3.2	38

#	Article	IF	CITATIONS
91	PfClpC Is an Essential Clp Chaperone Required for Plastid Integrity and Clp Protease Stability in Plasmodium falciparum. Cell Reports, 2017, 21, 1746-1756.	6.4	38
92	Phthalazinone inhibitors of inosine-5′-monophosphate dehydrogenase from Cryptosporidium parvum. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1004-1007.	2.2	37
93	<i>Toxoplasma gondii</i> Toc75 Functions in Import of Stromal but not Peripheral Apicoplast Proteins. Traffic, 2015, 16, 1254-1269.	2.7	36
94	Lipid kinases are essential for apicoplast homeostasis in <i>Toxoplasma gondii</i> . Cellular Microbiology, 2015, 17, 559-578.	2.1	36
95	Glycosyl-phosphatidylinositols ofTrypanosoma congolense: Two Common Precursors but a New Protein-anchor. Journal of Molecular Biology, 1996, 261, 181-194.	4.2	34
96	Interleukin-10 does not contribute to the pathogenesis of a virulent strain of Toxoplasma gondii. Parasite Immunology, 2001, 23, 291-296.	1.5	33
97	Plastid-Targeting Peptides from the Chlorarachniophyte Bigelowiella natans. Journal of Eukaryotic Microbiology, 2004, 51, 529-535.	1.7	33
98	Cryptosporidium rhoptry effector protein ROP1 injected during invasion targets the host cytoskeletal modulator LMO7. Cell Host and Microbe, 2021, 29, 1407-1420.e5.	11.0	33
99	Two glycoforms are present in the GPI-membrane anchor of the surface antigen 1 (P30) of Toxoplasma gondii. Molecular and Biochemical Parasitology, 2001, 116, 127-135.	1.1	30
100	More Membranes, more Proteins: Complex Protein Import Mechanisms into Secondary Plastids. Protist, 2010, 161, 672-687.	1.5	30
101	The HU Protein Is Important for Apicoplast Genome Maintenance and Inheritance in Toxoplasma gondii. Eukaryotic Cell, 2012, 11, 905-915.	3.4	30
102	Identification and characterization of <i>Toxoplasma</i> â€SIP, a conserved apicomplexan cytoskeleton protein involved in maintaining the shape, motility and virulence of the parasite. Cellular Microbiology, 2015, 17, 62-78.	2.1	29
103	Genetic rescue of a Toxoplasma gondii conditional cell cycle mutant. Molecular Microbiology, 2004, 55, 1060-1071.	2.5	28
104	Genetic Manipulation of Cryptosporidium parvum with CRISPR/Cas9. Methods in Molecular Biology, 2020, 2052, 219-228.	0.9	27
105	Live imaging of the Cryptosporidium parvum life cycle reveals direct development of male and female gametes from type I meronts. PLoS Biology, 2022, 20, e3001604.	5.6	27
106	Glucosylation of Glycosylphosphatidylinositol Membrane Anchors:  Identification of Uridine Diphosphateâ^'Glucose as the Direct Donor for Side Chain Modification in Toxoplasma gondii Using Carbohydrate Analogues. Biochemistry, 1999, 38, 1478-1487.	2.5	26
107	The apicoplast: a red alga in human parasites. Essays in Biochemistry, 2011, 51, 111-125.	4.7	26
108	Enterocyte–innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. Mucosal Immunology, 2022, 15, 362-372.	6.0	26

#	Article	IF	CITATIONS
109	Long-read assembly and comparative evidence-based reanalysis of <i>Cryptosporidium</i> genome sequences reveal expanded transporter repertoire and duplication of entire chromosome ends including subtelomeric regions. Genome Research, 2022, 32, 203-213.	5.5	26
110	Conditional Mutagenesis of a Novel Choline Kinase Demonstrates Plasticity of Phosphatidylcholine Biogenesis and Gene Expression in Toxoplasma gondii. Journal of Biological Chemistry, 2012, 287, 16289-16299.	3.4	25
111	A Plastid Protein That Evolved from Ubiquitin and Is Required for Apicoplast Protein Import in <i>Toxoplasma gondii</i> . MBio, 2017, 8, .	4.1	25
112	Transport and Trafficking: <i>Toxoplasma</i> as a Model for <i>Plasmodium</i> . Novartis Foundation Symposium, 1999, 226, 176-198.	1.1	25
113	The dense granule antigen, GRA2 of Toxoplasma gondii is a glycoprotein containing O-linked oligosaccharides. Molecular and Biochemical Parasitology, 1998, 97, 241-246.	1.1	23
114	Cryptosporidium. Current Biology, 2018, 28, R193-R194.	3.9	23
115	Studying the Cell Biology of Apicomplexan Parasites Using Fluorescent Proteins. Microscopy and Microanalysis, 2004, 10, 568-579.	0.4	22
116	Molecular genetic transfection of the coccidian parasite Sarcocystis neurona. Molecular and Biochemical Parasitology, 2006, 150, 1-9.	1.1	22
117	Protein sorting in complex plastids. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 352-359.	4.1	22
118	The enteric pathogen Cryptosporidium parvum exports proteins into the cytosol of the infected host cell. ELife, 2021, 10, .	6.0	22
119	Cryptosporidium parvum. Trends in Parasitology, 2020, 36, 485-486.	3.3	21
120	Analysis of Long Non-Coding RNA in Cryptosporidium parvum Reveals Significant Stage-Specific Antisense Transcription. Frontiers in Cellular and Infection Microbiology, 2020, 10, 608298.	3.9	21
121	Adenosine kinase from Cryptosporidium parvum. Molecular and Biochemical Parasitology, 2006, 149, 223-230.	1.1	20
122	Genetic Manipulation of Toxoplasma gondii. , 2014, , 577-611.		20
123	Prodrug Activation by Cryptosporidium Thymidine Kinase. Journal of Biological Chemistry, 2010, 285, 15916-15922.	3.4	17
124	What Do Human Parasites Do with a Chloroplast Anyway?. PLoS Biology, 2011, 9, e1001137.	5.6	17
125	<i>In Vitro</i> and <i>In Vivo</i> Activities of Sulfur-Containing Linear Bisphosphonates against Apicomplexan Parasites. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
126	Beg, Borrow and Steal: Three Aspects of Horizontal Gene Transfer in the Protozoan Parasite, Cryptosporidium parvum. PLoS Pathogens, 2016, 12, e1005429.	4.7	17

#	Article	IF	CITATIONS
127	Analysis of the Sarcocystis neurona microneme protein SnMIC10: protein characteristics and expression during intracellular development. International Journal for Parasitology, 2003, 33, 671-679.	3.1	16
128	A nucleolar AAA ―NTPase is required for parasite division. Molecular Microbiology, 2013, 90, 338-355.	2.5	16
129	A genetic screen identifies a protective type III interferon response to Cryptosporidium that requires TLR3 dependent recognition. PLoS Pathogens, 2022, 18, e1010003.	4.7	16
130	Genetic Manipulation of the Toxoplasma gondii Genome by Fosmid Recombineering. MBio, 2014, 5, e02021.	4.1	13
131	IDENTIFICATION AND CHARACTERISATION OF GLYCOSYL-INOSITOLPHOSPHOLIPIDS IN <i>TOXOPLASMA GONDII</i> . Biochemical Society Transactions, 1992, 20, 296S-296S.	3.4	12
132	Deploying Parasite Profilin on a Mission of Invasion and Danger. Cell Host and Microbe, 2008, 3, 61-63.	11.0	11
133	The cat is out of the bag: How parasites know their hosts. PLoS Biology, 2019, 17, e3000446.	5.6	11
134	Genetic manipulation of Toxoplasma gondii. , 2020, , 897-940.		11
135	A Homolog of Structural Maintenance of Chromosome 1 Is a Persistent Centromeric Protein Which Associates With Nuclear Pore Components in Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, 2020, 10, 295.	3.9	9
136	Expression, characterization and inhibition of Toxoplasma gondii 1-deoxy-d-xylulose-5-phosphate reductoisomerase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2158-2161.	2.2	8
137	Repurposing Infectious Disease Hits as Anti- <i>Cryptosporidium</i> Leads. ACS Infectious Diseases, 2021, 7, 1275-1282.	3.8	8
138	Replication and partitioning of the apicoplast genome of Toxoplasma gondii is linked to the cell cycle and requires DNA polymerase and gyrase. International Journal for Parasitology, 2021, 51, 493-504.	3.1	7
139	Switching parasite proteins on and off. Nature Methods, 2007, 4, 999-1000.	19.0	6
140	Immunocompetent rabbits infected with Cryptosporidium cuniculus as an animal model for anti-cryptosporidial drug testing. International Journal for Parasitology, 2021, , .	3.1	6
141	Teaching old drugs new tricks to stop malaria invasion in its tracks. BMC Biology, 2015, 13, 72.	3.8	5
142	Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia. International Journal of Molecular Sciences, 2021, 22, 6495.	4.1	5
143	The iron-sulfur scaffold protein HCF101 unveils the complexity of organellar evolution in SAR, Haptista and Cryptista. Bmc Ecology and Evolution, 2021, 21, 46.	1.6	3
144	Toxoplasma as a Model Apicomplexan Parasite: Biochemistry, Cell Biology, Molecular Genetics,		3

Genomics and Beyond. , 2000, , 143-167.

#	Article	IF	CITATIONS
145	Dynamics of Neutrophil Migration in Lymph Nodes during Infection. Immunity, 2008, 29, 661.	14.3	2
146	The gatekeeper revealed. Nature, 2009, 459, 918-919.	27.8	2
147	The Apicoplast: A Parasite's Symbiont. , 2014, , 209-238.		1
148	Drug Resistance and Emerging Targets in the Opportunistic Pathogens Toxoplasma gondii and Cryptosporidium parvum. , 2009, , 605-619.		1
149	Criticism: what to do about science's bad public image?. Nature, 2006, 444, 265-265.	27.8	0
150	The Apicoplast: An Ancient Algal Endosymbiont of Apicomplexa. Microbiology Monographs, 2010, , 253-283.	0.6	0
151	Protective Immunity in a Genetically Tractable Natural Mouse Model of Cryptosporidiosis. SSRN Electronic Journal, 0, , .	0.4	Ο