
Ronen Schweitzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5948946/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of Smad4 in the scleraxis cell lineage results in postnatal joint contracture. Developmental Biology, 2021, 470, 108-120.	0.9	8
2	<i>Ezh2</i> Is Essential for Patterning of Multiple Musculoskeletal Tissues but Dispensable for Tendon Differentiation. Stem Cells and Development, 2021, 30, 601-609.	1.1	4
3	Unexpected contribution of fibroblasts to muscle lineage as a mechanism for limb muscle patterning. Nature Communications, 2021, 12, 3851.	5.8	29
4	Localized chondro-ossification underlies joint dysfunction and motor deficits in the <i>Fkbp10</i> mouse model of osteogenesis imperfecta. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	3
5	Cell autonomous TGFβ signaling is essential for stem/progenitor cell recruitment into degenerative tendons. Stem Cell Reports, 2021, 16, 2942-2957.	2.3	6
6	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biology, 2020, 18, e3000902.	2.6	21
7	Tgfl 2 signaling is critical for maintenance of the tendon cell fate. ELife, 2020, 9, .	2.8	62
8	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
9	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		Ο
10	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
11	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		Ο
12	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
13	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
14	FGF signaling patterns cell fate at the interface between tendon and bone. Development (Cambridge), 2019, 146, .	1.2	28
15	Requirement for Scleraxis in the recruitment of mesenchymal progenitors during embryonic tendon elongation. Development (Cambridge), 2019, 146, .	1.2	41
16	Limb- and tendon-specific Adamtsl2 deletion identifies a role for ADAMTSL2 in tendon growth in a mouse model for geleophysic dysplasia. Matrix Biology, 2019, 82, 38-53.	1.5	21
17	Hic1 Defines Quiescent Mesenchymal Progenitor Subpopulations with Distinct Functions and Fates in Skeletal Muscle Regeneration. Cell Stem Cell, 2019, 25, 797-813.e9.	5.2	145
18	Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice. Journal of Biological Chemistry, 2018, 293, 5766-5780.	1.6	88

RONEN SCHWEITZER

#	Article	IF	CITATIONS
19	Activation of AKT-mTOR Signaling Directs Tenogenesis of Mesenchymal Stem Cells. Stem Cells, 2018, 36, 527-539.	1.4	36
20	Development of migrating tendon-bone attachments involves replacement of progenitor populations. Development (Cambridge), 2018, 145, .	1.2	40
21	Regulation of musculoskeletal integration and coordinated growth. Osteoarthritis and Cartilage, 2018, 26, S2-S3.	0.6	Ο
22	mTORC1 Signaling is a Critical Regulator of Postnatal Tendon Development. Scientific Reports, 2017, 7, 17175.	1.6	19
23	The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype. BMC Biology, 2016, 14, 21.	1.7	61
24	Differentiating zones at periodontal ligament–bone and periodontal ligament–cementum entheses. Journal of Periodontal Research, 2015, 50, 870-880.	1.4	29
25	Musculoskeletal integration at the wrist underlies modular development of limb tendons. Development (Cambridge), 2015, 142, 2431-41.	1.2	79
26	Molecular regulation of tendon cell fate during development. Journal of Orthopaedic Research, 2015, 33, 800-812.	1.2	101
27	On the development of the patella. Development (Cambridge), 2015, 142, 1831-1839.	1.2	67
28	Transcriptomic analysis of mouse limb tendon cells during development. Development (Cambridge), 2014, 141, 3683-3696.	1.2	152
29	Repositioning Forelimb Superficialis Muscles: Tendon Attachment and Muscle Activity Enable Active Relocation of Functional Myofibers. Developmental Cell, 2013, 26, 544-551.	3.1	47
30	Identification of novel scleraxis gene targets in cardiac myofibroblasts. FASEB Journal, 2013, 27, 1129.13.	0.2	0
31	Lineage Tracing Reveals a New Model for Tendon Growth and Elongation During Development. , 2012, ,		0
32	Conversion of Mechanical Force into TGF-Î ² -Mediated Biochemical Signals. Current Biology, 2011, 21, 933-941.	1.8	316
33	Scleraxis is Required for Differentiation of the Stapedius and Tensor Tympani Tendons of the Middle Ear. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 407-421.	0.9	19
34	Developmental fate of the mammalian myotome. Developmental Dynamics, 2010, 239, 2898-2910.	0.8	30
35	Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development (Cambridge), 2010, 137, 2807-2817.	1.2	216
36	The Atypical Homeodomain Transcription Factor Mohawk Controls Tendon Morphogenesis. Molecular and Cellular Biology, 2010, 30, 4797-4807.	1.1	145

RONEN SCHWEITZER

#	Article	IF	CITATIONS
37	Uncoupling skeletal and connective tissue patterning: conditional deletion in cartilage progenitors reveals cell-autonomous requirements for <i>Lmx1b</i> in dorsal-ventral limb patterning. Development (Cambridge), 2010, 137, 1181-1188.	1.2	36
38	Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development (Cambridge), 2010, 137, 3347-3347.	1.2	9
39	Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development (Cambridge), 2009, 136, 1351-1361.	1.2	371
40	Tubulin polymerizationâ€promoting protein family member 3, Tppp3, is a specific marker of the differentiating tendon sheath and synovial joints. Developmental Dynamics, 2009, 238, 685-692.	0.8	40
41	Tendons and muscles of the mouse forelimb during embryonic development. Developmental Dynamics, 2009, 238, 693-700.	0.8	27
42	Bone Ridge Patterning during Musculoskeletal Assembly Is Mediated through SCX Regulation of Bmp4 at the Tendon-Skeleton Junction. Developmental Cell, 2009, 17, 861-873.	3.1	270
43	Integration of CREB and bHLH transcriptional signaling pathways through direct heterodimerization of the proteins: Role in muscle and testis development. Molecular Reproduction and Development, 2008, 75, 1637-1652.	1.0	19
44	In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nature Methods, 2008, 5, 609-612.	9.0	95
45	Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development (Cambridge), 2007, 134, 2697-2708.	1.2	490
46	Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Developmental Dynamics, 2007, 236, 1677-1682.	0.8	253
47	Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Developmental Biology, 2006, 299, 22-34.	0.9	131
48	A Somitic Compartment of Tendon Progenitors. Cell, 2003, 113, 235-248.	13.5	487
49	Cloning and expression of a novel cysteine-rich secreted protein family member expressed in thyroid and pancreatic mesoderm within the chicken embryo. Mechanisms of Development, 2001, 102, 223-226.	1.7	25
50	Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development (Cambridge), 2001, 128, 3855-3866.	1.2	749
51	Similar expression and regulation of Gli2 and Gli3 in the chick limb bud. Mechanisms of Development, 2000, 98, 171-174.	1.7	32
52	p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 1999, 398, 714-718.	13.7	2,082
53	The dynamic organizer. Nature Cell Biology, 1999, 1, E179-E181.	4.6	1
54	EGF domain swap converts a Drosophila EGF receptor activator into anÂinhibitor. Genes and Development, 1998, 12, 908-913.	2.7	55

#	Article	IF	CITATIONS
55	A thousand and one roles for the Drosophila EGF receptor. Trends in Genetics, 1997, 13, 191-196.	2.9	255
56	Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature, 1995, 376, 699-702.	13.7	250
57	Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination Genes and Development, 1995, 9, 1518-1529.	2.7	301