List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5947898/publications.pdf Version: 2024-02-01

SUNC-FU HUNC

#	Article	IF	CITATIONS
1	A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nature Communications, 2022, 13, 819.	12.8	83
2	Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nature Energy, 2022, 7, 170-176.	39.5	96
3	Unveiling the Bonding Nature of C3 Intermediates in the CO ₂ Reduction Reaction through the Oxygen-Deficient Cu ₂ O(110) Surface─A DFT Study. Journal of Physical Chemistry C, 2022, 126, 5502-5512.	3.1	11
4	Ga doping disrupts C-C coupling and promotes methane electroproduction on CuAl catalysts. Chem Catalysis, 2022, 2, 908-916.	6.1	24
5	Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nature Communications, 2021, 12, 2932.	12.8	97
6	Unveiling the In Situ Generation of a Monovalent Fe(I) Site in the Single-Fe-Atom Catalyst for Electrochemical CO ₂ Reduction. ACS Catalysis, 2021, 11, 7292-7301.	11.2	51
7	Unraveling the Origin of Sulfurâ€Doped Feâ€Nâ€C Singleâ€Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spinâ€State Tuning. Angewandte Chemie, 2021, 133, 25608-25614.	2.0	38
8	Unraveling the Origin of Sulfurâ€Doped Feâ€Nâ€C Singleâ€Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spinâ€State Tuning. Angewandte Chemie - International Edition, 2021, 60, 25404-25410.	13.8	177
9	<i>In Situ</i> Precise Tuning of Bimetallic Electronic Effect for Boosting Oxygen Reduction Catalysis. Nano Letters, 2021, 21, 7753-7760.	9.1	24
10	Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers. Journal of the American Chemical Society, 2021, 143, 17226-17235.	13.7	43
11	Boride-derived oxygen-evolution catalysts. Nature Communications, 2021, 12, 6089.	12.8	51
12	Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst. Angewandte Chemie - International Edition, 2020, 59, 798-803.	13.8	315
13	Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst. Angewandte Chemie, 2020, 132, 808-813.	2.0	33
14	Innentitelbild: Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst (Angew. Chem. 2/2020). Angewandte Chemie, 2020, 132, 518-518.	2.0	1
15	In-situ X-ray techniques for non-noble electrocatalysts. Pure and Applied Chemistry, 2020, 92, 733-749.	1.9	19
16	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. CheM, 2020, 6, 3440-3454.	11.7	231
17	Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nature Communications, 2020, 11, 6190.	12.8	93
18	Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nature Nanotechnology, 2020, 15, 848-853.	31.5	210

#	Article	IF	CITATIONS
19	High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Letters, 2020, 5, 2811-2818.	17.4	106
20	Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nature Communications, 2020, 11, 4246.	12.8	221
21	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy, 2020, 5, 478-486.	39.5	363
22	Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy. Nano Letters, 2020, 20, 4278-4285.	9.1	201
23	Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. CheM, 2020, 6, 658-674.	11.7	418
24	Efficient Methane Electrosynthesis Enabled by Tuning Local CO ₂ Availability. Journal of the American Chemical Society, 2020, 142, 3525-3531.	13.7	154
25	Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catalysis, 2020, 3, 75-82.	34.4	390
26	Electrochemical flow systems enable renewable energy industrial chain of CO ₂ reduction. Pure and Applied Chemistry, 2020, 92, 1937-1951.	1.9	8
27	In Situ Spatially Coherent Identification of Phosphide-Based Catalysts: Crystallographic Latching for Highly Efficient Overall Water Electrolysis. ACS Energy Letters, 2019, 4, 2813-2820.	17.4	75
28	Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1903909.	21.0	345
29	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	13.6	571
30	Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. Journal of the American Chemical Society, 2019, 141, 3014-3023.	13.7	337
31	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	21.0	243
32	Dynamic Evolution of Atomically Dispersed Cu Species for CO ₂ Photoreduction to Solar Fuels. ACS Catalysis, 2019, 9, 4824-4833.	11.2	230
33	Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuO _{<i>x</i>} on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Central Science, 2019, 5, 1998-2009.	11.3	74
34	Dualâ€Hole Excitons Activated Photoelectrolysis in Neutral Solution. Small, 2018, 14, e1704047.	10.0	0
35	Electrocatalysts: Unraveling Geometrical Site Confinement in Highly Efficient Ironâ€Doped Electrocatalysts toward Oxygen Evolution Reaction (Adv. Energy Mater. 7/2018). Advanced Energy Materials, 2018, 8, 1870032.	19.5	5
36	An Earthâ€Abundant Catalystâ€Based Seawater Photoelectrolysis System with 17.9% Solarâ€ŧoâ€Hydrogen Efficiency. Advanced Materials, 2018, 30, e1707261.	21.0	189

#	Article	IF	CITATIONS
37	Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis. Small Methods, 2018, 2, 1800001.	8.6	70
38	Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3, 140-147.	39.5	1,594
39	High Spin State Promotes Water Oxidation Catalysis at Neutral pH in Spinel Cobalt Oxide. Industrial & Engineering Chemistry Research, 2018, 57, 1441-1445.	3.7	28
40	Nanomaterials: Dual-Hole Excitons Activated Photoelectrolysis in Neutral Solution (Small 14/2018). Small, 2018, 14, 1870061.	10.0	0
41	Unraveling Geometrical Site Confinement in Highly Efficient Ironâ€Doped Electrocatalysts toward Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701686.	19.5	125
42	Identification of Stabilizing High-Valent Active Sites by Operando High-Energy Resolution Fluorescence-Detected X-ray Absorption Spectroscopy for High-Efficiency Water Oxidation. Journal of the American Chemical Society, 2018, 140, 17263-17270.	13.7	92
43	Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337-365.	38.1	4,505
44	Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction. Nano Energy, 2017, 41, 148-153.	16.0	168
45	In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis. CheM, 2017, 3, 122-133.	11.7	214
46	In situ morphological transformation and investigation of electrocatalytic properties of cobalt oxide nanostructures toward oxygen evolution. CrystEngComm, 2016, 18, 6008-6012.	2.6	21
47	Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. Journal of Catalysis, 2016, 341, 82-90.	6.2	132
48	In Situ Spectroscopic Identification of μ-OO Bridging on Spinel Co ₃ O ₄ Water Oxidation Electrocatalyst. Journal of Physical Chemistry Letters, 2016, 7, 4847-4853.	4.6	136
49	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	10.3	1,078
50	lridium Oxideâ€Assisted Plasmonâ€Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers. Advanced Energy Materials, 2016, 6, 1501339.	19.5	111
51	Nanostructures: Iridium Oxideâ€Assisted Plasmonâ€Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers (Adv. Energy Mater. 8/2016). Advanced Energy Materials, 2016, 6, .	19.5	Ο
52	In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co ₃ O ₄ . Journal of the American Chemical Society, 2016, 138, 36-39.	13.7	787
53	The synergistic effect of a well-defined Au@Pt core–shell nanostructure toward photocatalytic hydrogen generation: interface engineering to improve the Schottky barrier and hydrogen-evolved kinetics. Chemical Communications, 2016, 52, 1567-1570.	4.1	52
54	Light-Induced In Situ Transformation of Metal Clusters to Metal Nanocrystals for Photocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 28105-28109.	8.0	59

#	Article	IF	CITATIONS
55	Oneâ€Dimensional Hybrid Nanostructures for Heterogeneous Photocatalysis and Photoelectrocatalysis. Small, 2015, 11, 2115-2131.	10.0	213
56	TiO2 Nanotubes: Metal-Cluster-Decorated TiO2 Nanotube Arrays: A Composite Heterostructure toward Versatile Photocatalytic and Photoelectrochemical Applications (Small 5/2015). Small, 2015, 11, 553-553.	10.0	5
57	Heterojunction of Zinc Blende/Wurtzite in Zn _{1–<i>x</i>} Cd _{<i>x</i>} S Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches. ACS Applied Materials & Interfaces, 2015, 7, 22558-22569.	8.0	74
58	Metalâ€Clusterâ€Decorated TiO ₂ Nanotube Arrays: A Composite Heterostructure toward Versatile Photocatalytic and Photoelectrochemical Applications. Small, 2015, 11, 554-567.	10.0	237
59	Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting. ACS Nano, 2014, 8, 10403-10413.	14.6	162
60	Spatially branched hierarchical ZnO nanorod-TiO ₂ nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D–1D hybrid nanostructures. Nanoscale, 2014, 6, 14950-14961.	5.6	101
61	CdS sensitized vertically aligned single crystal TiO2 nanorods on transparent conducting glass with improved solar cell efficiency and stability using ZnS passivation layer. Journal of Power Sources, 2013, 233, 236-243.	7.8	46
62	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. SSRN Electronic Journal, 0, , .	0.4	0
63	Operando X-ray absorption spectroscopic studies of the carbon dioxide reduction reaction in a modified flow cell. Catalysis Science and Technology, 0, , .	4.1	5
64	Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6