
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5947655/publications.pdf Version: 2024-02-01

AIDINC YU

#	Article	IF	CITATIONS
1	Eutectic Etching toward Inâ€Plane Porosity Manipulation of Clâ€Terminated MXene for Highâ€Performance Dualâ€Ion Battery Anode. Advanced Energy Materials, 2022, 12, 2102493.	19.5	37
2	Linker-Compensated Metal–Organic Framework with Electron Delocalized Metal Sites for Bifunctional Oxygen Electrocatalysis. Journal of the American Chemical Society, 2022, 144, 4783-4791.	13.7	86
3	2D Materials for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2022, 34, e2108079.	21.0	45
4	Emerging Trends in Sustainable CO ₂ â€Management Materials. Advanced Materials, 2022, 34, e2201547.	21.0	52
5	Bioinspired Tough Solidâ€State Electrolyte for Flexible Ultralongâ€Life Zinc–Air Battery. Advanced Materials, 2022, 34, e2110585.	21.0	58
6	Hierarchically Nanostructured Solidâ€ S tate Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
7	Hierarchically Nanostructured Solid‣tate Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angewandte Chemie, 2022, 134, .	2.0	13
8	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	19.5	33
9	Thin Film Polyamide Nanocomposite Membrane Decorated by Polyphenol-Assisted Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for Reverse Osmosis. ACS Applied Materials & Interfaces, 2022, 14, 1838-1849.	8.0	30
10	Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	19.5	61
11	lonic interaction-mediated interlayer repulsion force promotes steadily shuttling of Zn2+ ions within VOPO4. Nano Energy, 2022, 98, 107268.	16.0	9
12	Greatly Enhanced Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of Polyaniline-Grafted Ti ₃ C ₂ T _{<i>x</i>} MXene–PVDF Composites. ACS Applied Materials & Interfaces, 2022, 14, 21521-21534.	8.0	31
13	Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction. Nature Communications, 2022, 13, 2486.	12.8	99
14	Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO ₂ . Journal of the American Chemical Society, 2022, 144, 9661-9671.	13.7	134
15	The plasticizer-free composite block copolymer electrolytes for ultralong lifespan all-solid-state lithium-metal batteries. Nano Energy, 2022, 100, 107499.	16.0	20
16	Heterogeneous Nanodomain Electrolytes for Ultraâ€Longâ€Life Allâ€Solidâ€State Lithiumâ€Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	23
17	Structural Impact of Graphene Nanoribbon on Mechanical Properties and Anti-corrosion Performance of Polyurethane Nanocomposites. Chemical Engineering Journal, 2021, 405, 126858.	12.7	46
18	Molten-based defect engineering polymeric carbon nitride quantum dots with enhanced hole extraction: An efficient photoelectrochemical cell for water oxidation. Carbon, 2021, 173, 339-349.	10.3	15

#	Article	IF	CITATIONS
19	Selfâ€Templated Hierarchically Porous Carbon Nanorods Embedded with Atomic Feâ€N ₄ Active Sites as Efficient Oxygen Reduction Electrocatalysts in Znâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2008085.	14.9	117
20	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	38.1	191
21	Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie - International Edition, 2021, 60, 5864-5870.	13.8	29
22	Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites. Carbon, 2021, 174, 305-316.	10.3	38
23	Highly Stable Low-Cost Electrochemical Gas Sensor with an Alcohol-Tolerant N,S-Codoped Non-Precious Metal Catalyst Air Cathode. ACS Sensors, 2021, 6, 752-763.	7.8	7
24	Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie, 2021, 133, 5928-5934.	2.0	3
25	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nature Communications, 2021, 12, 186.	12.8	163
26	Structural dependence of the molecular mobility in acetylated starch. Polymer, 2021, 215, 123371.	3.8	6
27	A Gasâ€Phase Migration Strategy to Synthesize Atomically Dispersed Mnâ€N Catalysts for Zn–Air Batteries. Small Methods, 2021, 5, e2100024.	8.6	44
28	"Two Ships in a Bottle―Design for Zn–Ag–O Catalyst Enabling Selective and Long-Lasting CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 6855-6864.	13.7	139
29	"Sauna―Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for Highâ€Energy and Long‣asting Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100497.	19.5	53
30	Elucidating and tackling capacity fading of zinc-iodine redox flow batteries. Chemical Engineering Journal, 2021, 412, 128499.	12.7	21
31	Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. Nano Energy, 2021, 83, 105734.	16.0	41
32	Li–S Batteries: "Sauna―Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for Highâ€Energy and Long‣asting Lithium–Sulfur Batteries (Adv. Energy Mater. 26/2021). Advanced Energy Materials, 2021, 11, 2170099.	19.5	1
33	Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application. Advanced Science, 2021, 8, e2101051.	11.2	95
34	Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon, 2021, 179, 408-416.	10.3	66
35	Selfâ€Assembled Facilitated Transport Membranes with Tunable Carrier Distribution for Ethylene/Ethane Separation. Advanced Functional Materials, 2021, 31, 2104349.	14.9	12
36	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	11.2	110

#	Article	IF	CITATIONS
37	Design Zwitterionic Amorphous Conjugated Microâ€∤Mesoporous Polymer Assembled Nanotentacle as Highly Efficient Sulfur Electrocatalyst for Lithium‧ulfur Batteries. Advanced Energy Materials, 2021, 11, 2101926.	19.5	32
38	Engineering Oversaturated Feâ€N ₅ Multifunctional Catalytic Sites for Durable Lithium‣ulfur Batteries. Angewandte Chemie, 2021, 133, 26826-26833.	2.0	22
39	Engineering Oversaturated Feâ€N ₅ Multifunctional Catalytic Sites for Durable Lithiumâ€&ulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 26622-26629.	13.8	144
40	Maintaining electrical conductivity of microcellular MWCNT/TPU composites after deformation. Composites Part B: Engineering, 2021, 223, 109113.	12.0	23
41	Recent Progress on Highâ€Performance Cathode Materials for Zincâ€Ion Batteries. Small Structures, 2021, 2, 2000064.	12.0	85
42	Hierarchically Porous Ti ₃ C ₂ MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 19457-19467.	14.6	63
43	Frontispiz: Engineering Oversaturated Feâ€N ₅ Multifunctional Catalytic Sites for Durable Lithium‣ulfur Batteries. Angewandte Chemie, 2021, 133, .	2.0	0
44	Poly(lactic acid)/acetylated starch blends: Effect of starch acetylation on the material properties. Carbohydrate Polymers, 2020, 229, 115453.	10.2	33
45	Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen doping: a high-performance visible light-driven catalyst for nitrogen fixation. Nanoscale, 2020, 12, 1833-1841.	5.6	79
46	Hierarchically Porous Multimetalâ€Based Carbon Nanorod Hybrid as an Efficient Oxygen Catalyst for Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2020, 30, 1908167.	14.9	105
47	A Triphasic Bifunctional Oxygen Electrocatalyst with Tunable and Synergetic Interfacial Structure for Rechargeable Znâ€Air Batteries. Advanced Energy Materials, 2020, 10, 1903003.	19.5	74
48	Engineering investigation for the size effect of graphene oxide derived from graphene nanoplatelets in polyurethane composites. Canadian Journal of Chemical Engineering, 2020, 98, 1084-1096.	1.7	17
49	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, 49, 5407-5445.	38.1	264
50	A Near-Isotropic Proton-Conducting Porous Graphene Oxide Membrane. ACS Nano, 2020, 14, 14947-14959.	14.6	13
51	d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nature Communications, 2020, 11, 5858.	12.8	109
52	A Combined Ordered Macroâ€Mesoporous Architecture Design and Surface Engineering Strategy for Highâ€Performance Sulfur Immobilizer in Lithium–Sulfur Batteries. Small, 2020, 16, e2001089.	10.0	43
53	Substrate comparison for polypyrrole-graphene based high-performance flexible supercapacitors. Electrochimica Acta, 2020, 358, 136846.	5.2	21
54	Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77, 105212.	16.0	39

#	Article	IF	CITATIONS
55	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	38.1	461
56	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	19.5	109
57	Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb ₂ O _{5–<i>x</i>} Nanocluster toward Superior Li–S Performance. ACS Nano, 2020, 14, 4849-4860.	14.6	201
58	Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation. Chemical Engineering Journal, 2020, 394, 124822.	12.7	27
59	Tantalum-Based Electrocatalyst for Polysulfide Catalysis and Retention for High-Performance Lithium-Sulfur Batteries. Matter, 2020, 3, 920-934.	10.0	104
60	Fast production of zinc–hexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 5062-5069.	10.3	14
61	The conductivity of polydimethylsiloxane/graphene nano-ribbon foam composite with elongation. Carbon, 2020, 162, 328-338.	10.3	19
62	Recycling of mixed cathode lithiumâ€ion batteries for electric vehicles: Current status and future outlook. , 2020, 2, 6-43.		300
63	Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for Highâ€Performance Asymmetric Microâ€Supercapacitors. Advanced Energy Materials, 2020, 10, 1903724.	19.5	36
64	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2020, 142, 3583-3592.	13.7	174
65	Development of ï€â€"ï€ Interaction-Induced Functionalized Graphene Oxide on Mechanical and Anticorrosive Properties of Reinforced Polyurethane Composites. Industrial & Engineering Chemistry Research, 2020, 59, 3617-3628.	3.7	17
66	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie, 2020, 132, 18490-18504.	2.0	24
67	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie - International Edition, 2020, 59, 18334-18348.	13.8	174
68	The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters, 2020, 5, 1665-1675.	17.4	271
69	Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. Nature Communications, 2020, 11, 1952.	12.8	185
70	A "trimurti" heterostructured hybrid with an intimate CoO/Co _x P interface as a robust bifunctional air electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 9177-9184.	10.3	72
71	All-carbon flexible supercapacitors based on electrophoretic deposition of graphene quantum dots on carbon cloth. Journal of Power Sources, 2019, 438, 227009.	7.8	52
72	Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane Separation. Angewandte Chemie, 2019, 131, 14107-14113.	2.0	29

AIPING YU

#	Article	IF	CITATIONS
73	A highly sensitive breathable fuel cell gas sensor with nanocomposite solid electrolyte. InformaÄnÃ- Materiály, 2019, 1, 234-241.	17.3	32
74	Graphene quantum dot induced tunable growth of nanostructured MnCo ₂ O _{4.5} composites for high-performance supercapacitors. Sustainable Energy and Fuels, 2019, 3, 2499-2508.	4.9	46
75	Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane Separation. Angewandte Chemie - International Edition, 2019, 58, 13969-13975.	13.8	64
76	Defectâ€Enriched Nitrogen Doped–Graphene Quantum Dots Engineered NiCo ₂ S ₄ Nanoarray as Highâ€Efficiency Bifunctional Catalyst for Flexible Znâ€Air Battery. Small, 2019, 15, e1903610.	10.0	84
77	Merging Singleâ€Atomâ€Dispersed Iron and Graphitic Carbon Nitride to a Joint Electronic System for Highâ€Efficiency Photocatalytic Hydrogen Evolution. Small, 2019, 15, e1905166.	10.0	80
78	Molecular Trapping Strategy To Stabilize Subnanometric Pt Clusters for Highly Active Electrocatalysis. ACS Catalysis, 2019, 9, 11603-11613.	11.2	43
79	Bioinspired Graphene Oxide Membranes with Dual Transport Mechanisms for Precise Molecular Separation. Advanced Functional Materials, 2019, 29, 1905229.	14.9	75
80	Rational design of tailored porous carbon-based materials for CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 20985-21003.	10.3	150
81	Tailoring FeN ₄ Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in Proton Exchange Membrane Fuel Cell. Advanced Energy Materials, 2019, 9, 1803737.	19.5	148
82	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 9742-9747.	2.0	59
83	Rücktitelbild: A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction (Angew.) Tj ETQq1	1 1 0.7843 2.0	14 rgBT /0\
84	A 3D ordered hierarchically porous non-carbon electrode for highly effective and efficient capacitive deionization. Journal of Materials Chemistry A, 2019, 7, 15633-15639.	10.3	43
85	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9640-9645.	13.8	312
86	Phase evolution of conversion-type electrode for lithium ion batteries. Nature Communications, 2019, 10, 2224.	12.8	99
87	Fuel Cells: Tailoring FeN ₄ Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in Proton Exchange Membrane Fuel Cell (Adv. Energy Mater. 11/2019). Advanced Energy Materials, 2019, 9, 1970031.	19.5	7
88	Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900228.	19.5	177
89	Zinc–Air Batteries: An Oxygenâ€Vacancyâ€Rich Semiconductorâ€Supported Bifunctional Catalyst for Efficient and Stable Zinc–Air Batteries (Adv. Mater. 6/2019). Advanced Materials, 2019, 31, 1970043.	21.0	3
90	Layerâ€Based Heterostructured Cathodes for Lithiumâ€lon and Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1808522.	14.9	82

AIPING YU

#	Article	IF	CITATIONS
91	From amorphous to crystalline: in situ growth Ni-Co chalcogenides hybrid nanostructure on carbon cloth for supercapacitor. Ionics, 2019, 25, 675-683.	2.4	3
92	Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 1-28.	25.5	745
93	3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy, 2019, 56, 118-126.	16.0	105
94	Recent Progress in Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2019, 31, e1805230.	21.0	398
95	An Oxygenâ€Vacancyâ€Rich Semiconductorâ€Supported Bifunctional Catalyst for Efficient and Stable Zinc–Air Batteries. Advanced Materials, 2019, 31, e1806761.	21.0	133
96	A general approach for fabricating 3D MFe2O4 (M=Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. Nano Energy, 2019, 57, 48-56.	16.0	75
97	Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nature Communications, 2018, 9, 705.	12.8	207
98	Controllable Urchinâ€Like NiCo ₂ S ₄ Microsphere Synergized with Sulfurâ€Doped Graphene as Bifunctional Catalyst for Superior Rechargeable Zn–Air Battery. Advanced Functional Materials, 2018, 28, 1706675.	14.9	203
99	Melamine based, n-doped carbon/reduced graphene oxide composite foam for Li-ion Hybrid Supercapacitors. Carbon, 2018, 129, 152-158.	10.3	42
100	Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Composites Part B: Engineering, 2018, 133, 218-225.	12.0	83
101	Investigation of the size effect of graphene nano-platelets (GnPs) on the anti-corrosion performance of polyurethane/GnP composites. RSC Advances, 2018, 8, 17091-17100.	3.6	41
102	Stringed "tube on cube―nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy and Environmental Science, 2018, 11, 2372-2381.	30.8	255
103	An all-aqueous redox flow battery with unprecedented energy density. Energy and Environmental Science, 2018, 11, 2010-2015.	30.8	147
104	Modified chalcogens with a tuned nano-architecture for high energy density and long life hybrid super capacitors. Journal of Materials Chemistry A, 2017, 5, 7523-7532.	10.3	14
105	Reconciled Nanoarchitecture with Overlapped 2 D Anatomy for Highâ€Energy Hybrid Supercapacitors. Energy Technology, 2017, 5, 1919-1926.	3.8	4
106	Design of ultralong single-crystal nanowire-based bifunctional electrodes for efficient oxygen and hydrogen evolution in a mild alkaline electrolyte. Journal of Materials Chemistry A, 2017, 5, 10895-10901.	10.3	23
107	Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20603-20612.	8.0	21
108	Advanced Biowasteâ€Based Flexible Photocatalytic Fuel Cell as a Green Wearable Power Generator. Advanced Materials Technologies, 2017, 2, 1600191.	5.8	22

#	Article	IF	CITATIONS
109	Green Solid Electrolyte with Cofunctionalized Nanocellulose/Graphene Oxide Interpenetrating Network for Electrochemical Gas Sensors. Small Methods, 2017, 1, 1700237.	8.6	58
110	Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior Lithium Storage. ACS Nano, 2017, 11, 11521-11530.	14.6	88
111	Defect Engineering of Chalcogenâ€Tailored Oxygen Electrocatalysts for Rechargeable Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2017, 29, 1702526.	21.0	171
112	All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 39576-39583.	8.0	67
113	Development of Embedded Fiber-Optic Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 41284-41290.	8.0	30
114	Nonprecious Electrocatalysts for Li-Air and Zn-Air batteries: Fundamentals and recent advances. IEEE Nanotechnology Magazine, 2017, 11, 29-55.	1.3	16
115	Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Advanced Materials, 2017, 29, 1604685.	21.0	1,143
116	Enhanced Reversible Sodiumâ€ion Intercalation by Synergistic Coupling of Fewâ€Layered MoS ₂ and Sâ€Doped Graphene. Advanced Functional Materials, 2017, 27, 1702562.	14.9	132
117	Multigrain electrospun nickel doped lithium titanate nanofibers with high power lithium ion storage. Journal of Materials Chemistry A, 2016, 4, 12638-12647.	10.3	25
118	Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode–electrolyte interaction in high-power Li-ion batteries. Nano Energy, 2016, 24, 72-77.	16.0	91
119	Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 2533-2538.	30.8	330
120	Flexible high performance lithium ion battery electrode based on a free-standing TiO ₂ nanocrystals/carbon cloth composite. RSC Advances, 2016, 6, 35479-35485.	3.6	12
121	Molecular Functionalization of Graphene Oxide for Next-Generation Wearable Electronics. ACS Applied Materials & Interfaces, 2016, 8, 25428-25437.	8.0	31
122	Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 25297-25305.	8.0	59
123	Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene–Foam Composites. ACS Applied Materials & Interfaces, 2016, 8, 25941-25953.	8.0	66
124	Optical Characterization of Commercial Lithiated Graphite Battery Electrodes and in Situ Fiber Optic Evanescent Wave Spectroscopy. ACS Applied Materials & Interfaces, 2016, 8, 18763-18769.	8.0	41
125	Corrosion inhibition of copper in sodium chloride solution using polyetherimide/graphene composites. Canadian Journal of Chemical Engineering, 2016, 94, 896-904.	1.7	35
126	Laminated Cross‣inked Nanocellulose/Graphene Oxide Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2016, 6, 1600476.	19.5	155

#	Article	IF	CITATIONS
127	Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. Journal of Materials Chemistry A, 2016, 4, 3754-3764.	10.3	136
128	Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 1984-1991.	8.0	63
129	The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy and Environmental Science, 2016, 9, 357-390.	30.8	456
130	Morphologically Controlled Bioinspired Dopamineâ€Polypyrrole Nanostructures with Tunable Electrical Properties. Advanced Electronic Materials, 2015, 1, 1500205.	5.1	48
131	α-NiS grown on reduced graphene oxide and single-wall carbon nanotubes as electrode materials for high-power supercapacitors. RSC Advances, 2015, 5, 27940-27945.	3.6	24
132	Fast lithium-ion storage of Nb ₂ O ₅ nanocrystals in situ grown on carbon nanotubes for high-performance asymmetric supercapacitors. RSC Advances, 2015, 5, 41179-41185.	3.6	51
133	Synthesis and Characterization of Template-Free VS ₄ Nanostructured Materials with Potential Application in Photocatalysis. Industrial & Engineering Chemistry Research, 2015, 54, 2682-2689.	3.7	53
134	Introduction of an Enhanced Binding of Reduced Graphene Oxide to Polyurethane Sponge for Oil Absorption. Industrial & Engineering Chemistry Research, 2015, 54, 3657-3663.	3.7	83
135	Reduced Graphene Oxide/Tin–Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 24895-24901.	8.0	89
136	Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries. Nature Communications, 2015, 6, 8597.	12.8	163
137	Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 23768-23777.	10.3	87
138	Highly conductive interconnected graphene foam based polymer composite. Carbon, 2015, 95, 653-658.	10.3	68
139	Electrochemistry: Development and Simulation of Sulfur-doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction (Adv. Funct. Mater. 27/2014). Advanced Functional Materials, 2014, 24, 4324-4324.	14.9	4
140	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy and Environmental Science, 2014, 7, 1564.	30.8	996
141	Development and Simulation of Sulfurâ€doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction. Advanced Functional Materials, 2014, 24, 4325-4336.	14.9	214
142	Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power Densities. Electrochimica Acta, 2014, 125, 117-123.	5.2	34
143	Enhanced Solar Photocatalytic Degradation of Phenol with Coupled Graphene-Based Titanium Dioxide and Zinc Oxide. Industrial & Engineering Chemistry Research, 2014, 53, 18824-18832.	3.7	87
144	Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2013, 1, 12255.	10.3	220

#	Article	IF	CITATIONS
145	Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. Journal of Materials Chemistry A, 2013, 1, 2904.	10.3	215
146	Effect of electrode physical and chemical properties on lithium-ion battery performance. International Journal of Energy Research, 2013, 37, 1723-1736.	4.5	30
147	Highly Active and Durable Core–Corona Structured Bifunctional Catalyst for Rechargeable Metal–Air Battery Application. Nano Letters, 2012, 12, 1946-1952.	9.1	392
148	A review on non-precious metal electrocatalysts for PEM fuel cells. Energy and Environmental Science, 2011, 4, 3167.	30.8	1,651
149	Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene. Canadian Journal of Chemical Engineering, 2011, 89, 1342-1357.	1.7	154
150	Ultrathin, transparent, and flexible graphene films for supercapacitor application. Applied Physics Letters, 2010, 96, .	3.3	347
151	Gram-Scale Preparation of Surfactant-Free, Carboxylic Acid Groups Functionalized, Individual Single-Walled Carbon Nanotubes in Aqueous Solution. Langmuir, 2010, 26, 1221-1225.	3.5	19
152	Biologically Inspired Highly Durable Iron Phthalocyanine Catalysts for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. Journal of the American Chemical Society, 2010, 132, 17056-17058.	13.7	259