Elinor L Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5947346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity. Waste Management, 2022, 144, 421-430.	7.4	13
2	Reaction Stages of Feather Hydrolysis: Factors That Influence Availability for Enzymatic Hydrolysis and Cystine Conservation during Thermal Pressure Hydrolysis. Biotechnology and Bioprocess Engineering, 2020, 25, 749-757.	2.6	4
3	Synthesis and characterization of a supported Pd complex on carbon nanofibers for the selective decarbonylation of stearic acid to 1-heptadecene: the importance of subnanometric Pd dispersion. Catalysis Science and Technology, 2020, 10, 2970-2985.	4.1	6
4	Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade. Molecular Catalysis, 2017, 443, 92-100.	2.0	15
5	Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of α,ï‰-diol and α,ï‰-dicarboxylic acid esters. Metabolic Engineering, 2017, 44, 134-142.	7.0	14
6	Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions. Green Chemistry, 2017, 19, 5178-5186.	9.0	5
7	The Future of Ethenolysis in Biobased Chemistry. ChemSusChem, 2017, 10, 470-482.	6.8	54
8	Mechanochemical Immobilisation of Metathesis Catalysts in a Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 15437-15443.	3.3	21
9	Simultaneous and selective decarboxylation of l-serine and deamination of l-phenylalanine in an amino acid mixture—a means of separating amino acids for synthesizing biobased chemicals. New Biotechnology, 2016, 33, 171-178.	4.4	14
10	Conversion of polyhydroxybutyrate (PHB) to methyl crotonate for the production of biobased monomers. Journal of Applied Polymer Science, 2015, 132, .	2.6	22
11	Deoxygenation of biobased molecules by decarboxylation and decarbonylation $\hat{a} \in \hat{a}$ a review on the role of heterogeneous, homogeneous and bio-catalysis. Green Chemistry, 2015, 17, 3231-3250.	9.0	167
12	The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase—a means of separating amino acids for synthesizing biobased chemicals. Biotechnology Progress, 2014, 30, 681-688.	2.6	7
13	Synthesis of Bioâ€Based Methacrylic Acid by Decarboxylation of Itaconic Acid and Citric Acid Catalyzed by Solid Transitionâ€Metal Catalysts. ChemSusChem, 2014, 7, 2712-2720.	6.8	57
14	Polymerisation of β-alanine through catalytic ester–amide exchange. European Polymer Journal, 2013, 49, 1773-1781.	5.4	22
15	Immobilised enzymes in biorenewables production. Chemical Society Reviews, 2013, 42, 6491.	38.1	232
16	Enzyme-Catalyzed Polymerization of β-alanine Esters, A Sustainable Route Towards the Formation of Poly-β-alanine. Current Organic Chemistry, 2013, 17, 682-690.	1.6	9
17	Simultaneous production of biobased styrene and acrylates using ethenolysis. Green Chemistry, 2012, 14, 2747.	9.0	46
18	Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass and Bioenergy, 2012, 44, 168-181.	5.7	140

ELINOR L SCOTT

#	Article	IF	CITATIONS
19	Technoâ€economic assessment of the production of bioâ€based chemicals from glutamic acid. Biofuels, Bioproducts and Biorefining, 2012, 6, 177-187.	3.7	19
20	Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase. ChemSusChem, 2012, 5, 1199-1202.	6.8	58
21	A Novel Photocatalytic Conversion of Tryptophan to Kynurenine Using Black Light as a Light Source. Catalysis Letters, 2012, 142, 338-344.	2.6	26
22	Separation of Lâ€espartic acid and Lâ€glutamic acid mixtures for use in the production of bioâ€based chemicals. Journal of Chemical Technology and Biotechnology, 2012, 87, 1458-1465.	3.2	21
23	Stabilization and immobilization of Trypanosoma brucei ornithine decarboxylase for the biobased production of 1,4-diaminobutane. Green Chemistry, 2011, 13, 1167.	9.0	26
24	Biobased synthesis of acrylonitrile from glutamic acid. Green Chemistry, 2011, 13, 807.	9.0	67
25	The use of l-lysine decarboxylase as a means to separate amino acids by electrodialysis. Green Chemistry, 2011, 13, 624.	9.0	43
26	Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine. ChemSusChem, 2011, 4, 785-791.	6.8	45
27	Acid and Base Catalyzed Hydrolysis of Cyanophycin for the Biobased Production of Nitrogen Containing Chemicals. Journal of Biobased Materials and Bioenergy, 2011, 5, 102-108.	0.3	9
28	An efficient enzymatic synthesis of 5-aminovaleric acid. Journal of Molecular Catalysis B: Enzymatic, 2010, 65, 58-62.	1.8	39
29	Selective preparation of terminal alkenes from aliphatic carboxylic acids by a palladium-catalysed decarbonylation–elimination reaction. Tetrahedron Letters, 2010, 51, 3712-3715.	1.4	61
30	Perspectives on Chemicals from Renewable Resources. , 2010, , 195-210.		2
31	Synthesis of biobased N-methylpyrrolidone by one-pot cyclization and methylation of γ-aminobutyric acid. Green Chemistry, 2010, 12, 1430.	9.0	71
32	Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnology for Biofuels, 2009, 2, 31.	6.2	90
33	The application of glutamic acid α-decarboxylase for the valorization of glutamic acid. Green Chemistry, 2009, 11, 1562.	9.0	91
34	A study on the applicability of l-aspartate α-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chemistry, 2009, 11, 1646.	9.0	71
35	Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining, 2008, 2, 41-57.	3.7	433
36	Bio-Refinery as the Bio-Inspired Process to Bulk Chemicals. Macromolecular Bioscience, 2007, 7, 105-117.	4.1	226

#	Article	IF	CITATIONS
37	Biomass in the manufacture of industrial products—the use of proteins and amino acids. Applied Microbiology and Biotechnology, 2007, 75, 751-762.	3.6	260
38	Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology, 2007, 77, 257-267.	3.6	80