Elinor L Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5947346/publications.pdf

Version: 2024-02-01

304743 330143 2,586 38 22 37 citations h-index g-index papers 38 38 38 3133 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining, 2008, 2, 41-57.	3.7	433
2	Biomass in the manufacture of industrial productsâ€"the use of proteins and amino acids. Applied Microbiology and Biotechnology, 2007, 75, 751-762.	3.6	260
3	Immobilised enzymes in biorenewables production. Chemical Society Reviews, 2013, 42, 6491.	38.1	232
4	Bio-Refinery as the Bio-Inspired Process to Bulk Chemicals. Macromolecular Bioscience, 2007, 7, 105-117.	4.1	226
5	Deoxygenation of biobased molecules by decarboxylation and decarbonylation – a review on the role of heterogeneous, homogeneous and bio-catalysis. Green Chemistry, 2015, 17, 3231-3250.	9.0	167
6	Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass and Bioenergy, 2012, 44, 168-181.	5.7	140
7	The application of glutamic acid \hat{l} ±-decarboxylase for the valorization of glutamic acid. Green Chemistry, 2009, 11, 1562.	9.0	91
8	Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnology for Biofuels, 2009, 2, 31.	6.2	90
9	Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology, 2007, 77, 257-267.	3.6	80
10	A study on the applicability of l-aspartate \hat{l} ±-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chemistry, 2009, 11, 1646.	9.0	71
11	Synthesis of biobased N-methylpyrrolidone by one-pot cyclization and methylation of \hat{I}^3 -aminobutyric acid. Green Chemistry, 2010, 12, 1430.	9.0	71
12	Biobased synthesis of acrylonitrile from glutamic acid. Green Chemistry, 2011, 13, 807.	9.0	67
13	Selective preparation of terminal alkenes from aliphatic carboxylic acids by a palladium-catalysed decarbonylation–elimination reaction. Tetrahedron Letters, 2010, 51, 3712-3715.	1.4	61
14	Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase. ChemSusChem, 2012, 5, 1199-1202.	6.8	58
15	Synthesis of Bioâ€Based Methacrylic Acid by Decarboxylation of Itaconic Acid and Citric Acid Catalyzed by Solid Transitionâ€Metal Catalysts. ChemSusChem, 2014, 7, 2712-2720.	6.8	57
16	The Future of Ethenolysis in Biobased Chemistry. ChemSusChem, 2017, 10, 470-482.	6.8	54
17	Simultaneous production of biobased styrene and acrylates using ethenolysis. Green Chemistry, 2012, 14, 2747.	9.0	46
18	Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine. ChemSusChem, 2011, 4, 785-791.	6.8	45

#	Article	IF	CITATIONS
19	The use of l-lysine decarboxylase as a means to separate amino acids by electrodialysis. Green Chemistry, 2011, 13, 624.	9.0	43
20	An efficient enzymatic synthesis of 5-aminovaleric acid. Journal of Molecular Catalysis B: Enzymatic, 2010, 65, 58-62.	1.8	39
21	Stabilization and immobilization of Trypanosoma brucei ornithine decarboxylase for the biobased production of 1,4-diaminobutane. Green Chemistry, 2011, 13, 1167.	9.0	26
22	A Novel Photocatalytic Conversion of Tryptophan to Kynurenine Using Black Light as a Light Source. Catalysis Letters, 2012, 142, 338-344.	2.6	26
23	Polymerisation of β-alanine through catalytic ester–amide exchange. European Polymer Journal, 2013, 49, 1773-1781.	5 . 4	22
24	Conversion of polyhydroxybutyrate (PHB) to methyl crotonate for the production of biobased monomers. Journal of Applied Polymer Science, 2015, 132, .	2.6	22
25	Separation of Lâ€aspartic acid and Lâ€glutamic acid mixtures for use in the production of bioâ€based chemicals. Journal of Chemical Technology and Biotechnology, 2012, 87, 1458-1465.	3.2	21
26	Mechanochemical Immobilisation of Metathesis Catalysts in a Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 15437-15443.	3.3	21
27	Technoâ€economic assessment of the production of bioâ€based chemicals from glutamic acid. Biofuels, Bioproducts and Biorefining, 2012, 6, 177-187.	3.7	19
28	Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade. Molecular Catalysis, 2017, 443, 92-100.	2.0	15
29	Simultaneous and selective decarboxylation of l-serine and deamination of l-phenylalanine in an amino acid mixture—a means of separating amino acids for synthesizing biobased chemicals. New Biotechnology, 2016, 33, 171-178.	4.4	14
30	Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of \hat{l}_{\pm} , \hat{l}_{∞} -diol and \hat{l}_{\pm} , \hat{l}_{∞} -dicarboxylic acid esters. Metabolic Engineering, 2017, 44, 134-142.	7.0	14
31	A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity. Waste Management, 2022, 144, 421-430.	7.4	13
32	Acid and Base Catalyzed Hydrolysis of Cyanophycin for the Biobased Production of Nitrogen Containing Chemicals. Journal of Biobased Materials and Bioenergy, 2011, 5, 102-108.	0.3	9
33	Enzyme-Catalyzed Polymerization of & Samp;#946;-alanine Esters, A Sustainable Route Towards the Formation of Poly-& Samp;#946;-alanine. Current Organic Chemistry, 2013, 17, 682-690.	1.6	9
34	The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylaseâ€"a means of separating amino acids for synthesizing biobased chemicals. Biotechnology Progress, 2014, 30, 681-688.	2.6	7
35	Synthesis and characterization of a supported Pd complex on carbon nanofibers for the selective decarbonylation of stearic acid to 1-heptadecene: the importance of subnanometric Pd dispersion. Catalysis Science and Technology, 2020, 10, 2970-2985.	4.1	6
36	Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions. Green Chemistry, 2017, 19, 5178-5186.	9.0	5

#	Article	IF	CITATIONS
37	Reaction Stages of Feather Hydrolysis: Factors That Influence Availability for Enzymatic Hydrolysis and Cystine Conservation during Thermal Pressure Hydrolysis. Biotechnology and Bioprocess Engineering, 2020, 25, 749-757.	2.6	4
38	Perspectives on Chemicals from Renewable Resources. , 2010, , 195-210.		2