Jeffrey T Culp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5947323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Guest@MOF Interaction via Stepwise Thermal Annealing: TCNQ@Cu ₃ (BTC) ₂ . Crystal Growth and Design, 2021, 21, 817-828.	3.0	5
2	Synthesis of High-Quality Mg-MOF-74 Thin Films <i>via</i> Vapor-Assisted Crystallization. ACS Applied Materials & amp; Interfaces, 2021, 13, 35223-35231.	8.0	23
3	Density Functional Theory Study of the Structure of the Pillared Hofmann Compound Ni(3-Methyl-4,4â€2-bipyridine)[Ni(CN) ₄] (Ni-BpyMe or PICNIC-21). Journal of Physical Chemistry C, 2021, 125, 15882-15889.	3.1	3
4	Metal-organic framework functionalized polymer coating for fiber optical methane sensors. Sensors and Actuators B: Chemical, 2020, 324, 128627.	7.8	43
5	Quantifying pore scale and matrix interactions of SCCO2 with the Marcellus shale. Fuel, 2020, 266, 116928.	6.4	31
6	State-of-the-art of methane sensing materials: A review and perspectives. TrAC - Trends in Analytical Chemistry, 2020, 125, 115820.	11.4	29
7	Alkylamine-Integrated Metal–Organic Framework-Based Waveguide Sensors for Efficient Detection of Carbon Dioxide from Humid Gas Streams. ACS Applied Materials & Interfaces, 2019, 11, 33489-33496.	8.0	32
8	Structural Basis of CO2 Adsorption in a Flexible Metal-Organic Framework Material. Nanomaterials, 2019, 9, 354.	4.1	10
9	Quantifying dry supercritical CO2-induced changes of the Utica Shale. Fuel, 2018, 226, 54-64.	6.4	61
10	Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform. ACS Sensors, 2018, 3, 386-394.	7.8	134
11	Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane. Nanoscale, 2018, 10, 8075-8087.	5.6	84
12	Electronic structure, pore size distribution, and sorption characterization of an unusual MOF, {[Ni(dpbz)][Ni(CN)4]}n, dpbz = 1,4-bis(4-pyridyl)benzene. Journal of Applied Physics, 2018, 123, 245105.	2.5	9
13	Simple Fabrication Method for Mixed Matrix Membranes with in Situ MOF Growth for Gas Separation. ACS Applied Materials & Interfaces, 2018, 10, 24784-24790.	8.0	77
14	Active Response of Six-Coordinate Cu ²⁺ on CO ₂ Uptake in Cu(dpa) ₂ SiF ₆ - <i>i</i> from <i>in Situ</i> X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 11519-11523.	3.1	3
15	Crystallography of Representative MOFs Based on Pillared Cyanonickelate (PICNIC) Architecture. Crystals, 2016, 6, 108.	2.2	8
16	Synthesis and structural characterization of a flexible metal organic framework Sciences, 2016, 52, 1-9.	3.2	9
17	Flexible Solid Sorbents for CO2 CaptureÂand Separation. , 2015, , 149-176.		2
18	Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer. Journal of Colloid and Interface Science, 2013, 393, 278-285.	9.4	26

JEFFREY T CULP

#	Article	IF	CITATIONS
19	Effect of Spinâ€Crossoverâ€Induced Pore Contraction on CO ₂ –Host Interactions in the Porous Coordination Polymers [Fe(pyrazine)M(CN) ₄] (M = Ni, Pt). European Journal of Inorganic Chemistry, 2013, 2013, 511-519.	2.0	15
20	Screening Hofmann Compounds as CO ₂ Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates. Inorganic Chemistry, 2013, 52, 4205-4216.	4.0	61
21	FT-IR Study of CO ₂ Adsorption in a Dynamic Copper(II) Benzoateâ^'Pyrazine Host with CO ₂ â^'CO ₂ Interactions in the Adsorbed State. Journal of Physical Chemistry C, 2011, 115, 1857-1866.	3.1	52
22	Selective Adsorption of CO ₂ from Light Gas Mixtures by Using a Structurally Dynamic Porous Coordination Polymer. Angewandte Chemie - International Edition, 2011, 50, 10888-10892.	13.8	52
23	Mechanism for the Dynamic Adsorption of CO ₂ and CH ₄ in a Flexible Linear Chain Coordination Polymer as Determined from In Situ Infrared Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 2184-2191.	3.1	37
24	Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives:  The Effects of Pore Size. Journal of Physical Chemistry C, 2008, 112, 7079-7083.	3.1	67
25	Hysteresis in the Physisorption of CO ₂ and N ₂ in a Flexible Pillared Layer Nickel Cyanide. Journal of the American Chemical Society, 2008, 130, 12427-12434.	13.7	139
26	Adsorption Properties of Hydrogen and Carbon Dioxide in Prussian Blue Analogues M3[Co(CN)6]2, M = Co, Zn. Journal of Physical Chemistry C, 2007, 111, 1055-1060.	3.1	84
27	Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2:  An Effective Activation Procedure. Journal of Physical Chemistry C, 2007, 111, 9305-9313.	3.1	250
28	Kinetics of desorption of hexane from the microporous metal organic framework RPM-1. Microporous and Mesoporous Materials, 2007, 106, 115-121.	4.4	2
29	Hydrogen Storage Properties of Metal Nitroprussides M[Fe(CN)5NO], (M = Co, Ni). Journal of Physical Chemistry B, 2006, 110, 8325-8328.	2.6	61
30	Magnetism of metal cyanide networks assembled at interfaces. Coordination Chemistry Reviews, 2005, 249, 2642-2648.	18.8	63
31	Two applications of metal cyanide square grid monolayers: studies of evolving magnetic properties in layered films and templating Prussian blue family thin films. Polyhedron, 2003, 22, 2125-2131.	2.2	21
32	Interface directed assembly of cyanide-bridged Fe–Co and Fe–Mn square grid networks. Polyhedron, 2003, 22, 3059-3064.	2.2	10
33	Monolayer, Bilayer, Multilayers:Â Evolving Magnetic Behavior in Langmuirâ 'Blodgett Films Containing a Two-Dimensional Ironâ 'Nickel Cyanide Square Grid Network. Inorganic Chemistry, 2003, 42, 2842-2848.	4.0	53
34	Grazing Incidence Synchrotron X-ray Diffraction of Polymerizing Langmuir Monolayers. Langmuir, 2003, 19, 10514-10522.	3.5	7
35	Sequential Assembly of Homogeneous Magnetic Prussian Blue Films on Templated Surfaces. Chemistry of Materials, 2003, 15, 3431-3436.	6.7	50
36	Assembly of a Two-dimensional Cobalt-iron Cyanide Grid Network at an Air-water Interface. Molecular Crystals and Liquid Crystals, 2002, 376, 383-388.	0.9	0

JEFFREY T CULP

#	Article	IF	CITATIONS
37	Structural Characterization of Metal Phosphonate Langmuirâ^'Blodgett Films by Grazing Incidence X-ray Diffraction. Langmuir, 2002, 18, 8260-8262.	3.5	2
38	Supramolecular Assembly at Interfaces:Â Formation of an Extended Two-Dimensional Coordinate Covalent Square Grid Network at the Airâ^'Water Interface. Journal of the American Chemical Society, 2002, 124, 10083-10090.	13.7	104
39	Real-Time Grazing Incidence X-ray Diffraction Studies of Polymerizing n-Octadecyltrimethoxysilane Langmuir Monolayers at the Air/Water Interface. Journal of the American Chemical Society, 2001, 123, 767-768.	13.7	23
40	Layered Mixed-Metal Phenylphosphonates, MnxCo1â^'x(O3PC6H5)·H2O: Structure and Magnetic Properties. Journal of Solid State Chemistry, 2001, 159, 362-370.	2.9	11
41	Metal Cyanide Networks Formed at an Air-Water Interface: Structure and Magnetic Properties. Materials Research Society Symposia Proceedings, 2000, 658, 521.	0.1	0