Yongmei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5945812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global ribosome motions revealed with elastic network model. Journal of Structural Biology, 2004, 147, 302-314.	2.8	284
2	Understanding the Protonation Behavior of Linear Polyethylenimine in Solutions through Monte Carlo Simulations. Biomacromolecules, 2010, 11, 29-38.	5.4	149
3	Exchange of Chains between Micelles of Labeled Polystyrene-block-poly(oxyethylene) As Monitored by Nonradiative Singlet Energy Transfer. Macromolecules, 1995, 28, 904-911.	4.8	121
4	Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. Journal of Chemical Physics, 2007, 126, 044901.	3.0	112
5	Size- and Shape-Controlled Synthesis and Properties of Magnetic–Plasmonic Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 10530-10546.	3.1	86
6	Molecular Dynamics Simulations of DNA-Polycation Complex Formation. Biophysical Journal, 2009, 97, 1971-1983.	0.5	85
7	Synthesis and properties of magnetic-optical core–shell nanoparticles. RSC Advances, 2017, 7, 17137-17153.	3.6	82
8	Simulation of the formation of micelles by diblock copolymers under weak segregation. Langmuir, 1993, 9, 66-70.	3.5	72
9	Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine, 2015, 10, 1973-1990.	3.3	70
10	Detection of the rate of exchange of chains between micelles formed by diblock copolymers in aqueous solution. Polymer Bulletin, 1992, 28, 333-338.	3.3	68
11	Identification of a Novel Cryptochrome Differentiating Domain Required for Feedback Repression in Circadian Clock Function. Journal of Biological Chemistry, 2012, 287, 25917-25926.	3.4	67
12	Flow Control by Smart Nanofluidic Channels:Â A Dissipative Particle Dynamics Simulation. Macromolecules, 2006, 39, 5546-5554.	4.8	63
13	Partitioning of Polymers into Pores near the Critical Adsorption Point. Macromolecules, 2002, 35, 7492-7498.	4.8	62
14	A review on the development of liquid chromatography systems for polyolefins. Journal of Separation Science, 2010, 33, 3446-3454.	2.5	59
15	Comparison of tRNA Motions in the Free and Ribosomal Bound Structures. Biophysical Journal, 2005, 89, 3399-3409.	0.5	54
16	Computer Simulation of Semidilute Polymer Solutions in Confined Geometry:Â Pore as a Microscopic Probe. Macromolecules, 1997, 30, 8473-8477.	4.8	51
17	Structures and Thermodynamics of Nondilute Polymer Solutions Confined between Parallel Plates. Macromolecules, 2000, 33, 3478-3484.	4.8	49
18	Retention Behaviors of Block Copolymers in Liquid Chromatography at the Critical Condition. Macromolecules, 2005, 38, 7514-7520.	4.8	48

#	Article	IF	CITATIONS
19	Characterization of ethyleneâ€propylene copolymers with highâ€ŧemperature gradient adsorption liquid chromatography and CRYSTAF. Journal of Applied Polymer Science, 2011, 122, 3211-3217.	2.6	45
20	A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly. BMC Biophysics, 2013, 6, 13.	4.4	45
21	Immunomagnetic Capture and Multiplexed Surface Marker Detection of Circulating Tumor Cells with Magnetic Multicolor Surface-Enhanced Raman Scattering Nanotags. ACS Applied Materials & Interfaces, 2020, 12, 47220-47232.	8.0	45
22	Coarse-Grained Molecular Dynamics Simulations of DNA Condensation by Block Copolymer and Formation of Coreâ [^] Corona Structures. Journal of Physical Chemistry B, 2010, 114, 6225-6232.	2.6	44
23	Monte Carlo Simulations for Micellar Encapsulation. Journal of Colloid and Interface Science, 1997, 190, 92-103.	9.4	41
24	Simulation of the self-assembly of symmetric triblock copolymers in dilute solution. Macromolecules, 1992, 25, 4073-4077.	4.8	38
25	Comparison of Critical Adsorption Points of Ring Polymers with Linear Polymers. Macromolecules, 2016, 49, 8780-8788.	4.8	38
26	A Computational Investigation of the Critical Condition Used in the Liquid Chromatography of Polymers. Macromolecules, 2004, 37, 10073-10078.	4.8	37
27	Dependence of the Critical Adsorption Point on Surface and Sequence Disorders for Self-Avoiding Walks Interacting with a Planar Surface. Macromolecules, 2007, 40, 3498-3504.	4.8	37
28	Retention Behavior of Star-Shaped Polystyrene near the Chromatographic Critical Condition. Macromolecules, 2008, 41, 3375-3383.	4.8	36
29	Kinetics of Detachment of Homopolymers from a Solid Surface. Physical Review Letters, 1995, 74, 2503-2506.	7.8	35
30	Impact of Core Dielectric Properties on the Localized Surface Plasmonic Spectra of Gold-Coated Magnetic Core–Shell Nanoparticles. Journal of Physical Chemistry B, 2014, 118, 14076-14084.	2.6	35
31	Effect of the Protonation Level and Ionic Strength on the Structure of Linear Polyethyleneimine. ACS Omega, 2019, 4, 7255-7264.	3.5	34
32	Pressure driven flow of polymer solutions in nanoscale slit pores. Journal of Chemical Physics, 2007, 126, 124905.	3.0	33
33	Capture and detection of cancer cells in whole blood with magnetic–optical nanoovals. Nanomedicine, 2014, 9, 593-606.	3.3	33
34	Liquid Chromatographic Separation of Olefin Oligomers and its Relation to Separation of Polyolefins – an Overview. Macromolecular Symposia, 2009, 282, 93-100.	0.7	32
35	Structural Comparisons of PEI/DNA and PEI/siRNA Complexes Revealed with Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2017, 121, 1941-1952.	2.6	31
36	Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles. Journal of Chemical Physics, 2016, 145, 054706.	3.0	30

#	Article	IF	CITATIONS
37	Weak-to-strong penetration transition of macromolecules into a slit in theta solvent. Journal of Chemical Physics, 2000, 113, 8313-8318.	3.0	29
38	HPLC Characterization of Hydrogenous Polystyrene-block-deuterated polystyrene Utilizing the Isotope Effect. Macromolecules, 2013, 46, 9114-9121.	4.8	28
39	Synthesis and properties of near infrared-absorbing magnetic–optical nanopins. Nanoscale, 2012, 4, 4939.	5.6	27
40	Modified electrospun chitosan membranes for controlled release of simvastatin. International Journal of Pharmaceutics, 2020, 584, 119438.	5.2	27
41	Computer simulation studies on overlapping polymer chains confined in narrow channels. Polymer, 2004, 45, 3835-3843.	3.8	26
42	Effects of Protein Subunits Removal on the Computed Motions of Partial 30S Structures of the Ribosome. Journal of Chemical Theory and Computation, 2008, 4, 1757-1767.	5.3	26
43	Influence of chain stiffness on the micellization of block copolymers in a selective solvent as observed in Monte Carlo simulations. Journal of Chemical Physics, 1994, 100, 7718-7721.	3.0	25
44	Controllable self-assembled plasmonic vesicle-based three-dimensional SERS platform for picomolar detection of hydrophobic contaminants. Nanoscale, 2018, 10, 13202-13211.	5.6	25
45	Control of Aggregation of Nanoparticles by Double-Hydrophilic Block Copolymers:  A Dissipative Particle Dynamics Study. Journal of Physical Chemistry B, 2007, 111, 7735-7741.	2.6	24
46	Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: a Monte Carlo simulation. Soft Matter, 2012, 8, 4695.	2.7	24
47	A Computational Investigation on the Connection between Dynamics Properties of Ribosomal Proteins and Ribosome Assembly. PLoS Computational Biology, 2012, 8, e1002530.	3.2	22
48	Crossover from Two- to Three-Dimensional Contraction of Polymer Chains in Semidilute Solutions Confined to a Narrow Slit. Macromolecules, 2000, 33, 6901-6903.	4.8	21
49	Transport of Star-Branched Polymers in Nanoscale Pipe Channels Simulated with Dissipative Particle Dynamics Simulation. Macromolecules, 2010, 43, 5896-5903.	4.8	21
50	Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation. Journal of Chemical Physics, 2012, 136, 144901.	3.0	21
51	Comparison of monovalent and divalent ion distributions around a DNA duplex with molecular dynamics simulation and a Poissonâ€Boltzmann approach. Biopolymers, 2014, 101, 834-848.	2.4	21
52	Selective Adsorption of Heteropolymer onto Heterogeneous Surfaces: Interplay between Sequences and Surface Patterns. Macromolecules, 2008, 41, 4929-4936.	4.8	20
53	Simulation of the adsorption of unsymmetric diblock copolymers at the interface between the two monomeric homopolymers. Journal of Chemical Physics, 1993, 99, 4068-4075.	3.0	19
54	Dynamic properties of homopolymer layers adsorbed on a solid surface. Journal of Chemical Physics, 1996, 105, 696-705.	3.0	19

#	Article	IF	CITATIONS
55	Lattice Monte Carlo Simulation for the Partitioning of a Bimodal Polymer Mixture into a Slit. Macromolecules, 2001, 34, 127-133.	4.8	19
56	Simulation of the adsorption of symmetric diblock copolymers at the interface of the two monomeric homopolymers. Journal of Chemical Physics, 1993, 98, 9881-9887.	3.0	18
57	Dissipative Particle Dynamics Simulation on a Ternary System with Nanoparticles, Double-Hydrophilic Block Copolymers, and Solvent. Journal of Physical Chemistry B, 2008, 112, 6735-6741.	2.6	18
58	Can the individual block in block copolymer be made chromatographically "invisible―at the critical condition of its corresponding homopolymer?. Polymer, 2013, 54, 3730-3736.	3.8	18
59	Partitioning of star branched polymers into pores at three chromatography conditions. Journal of Chromatography A, 2010, 1217, 6102-6109.	3.7	17
60	How Well Can One Separate Copolymers According to Both Chemical Compositions and Sequence Distributions?. Macromolecules, 2010, 43, 5888-5895.	4.8	17
61	Dependence of critical condition in liquid chromatography on the pore size of column substrates. Polymer, 2011, 52, 3219-3225.	3.8	17
62	Adsorption of Homopolymers on a Solid Surface: A Comparison between Monte Carlo Simulation and the Scheutjens-Fleer Mean-Field Lattice Theory. Langmuir, 1994, 10, 2281-2288.	3.5	16
63	Simulation of the random scission of C–C bonds in the initial stage of the thermal degradation of polyethylene. Computational and Theoretical Polymer Science, 2001, 11, 155-166.	1.1	16
64	The adsorption and partitioning of self-avoiding walk polymer chains into pores from a bulk theta solution. Polymer, 2005, 46, 10450-10456.	3.8	16
65	Dissipative particle dynamics simulation of on-chip hydrodynamic chromatography. Journal of Chromatography A, 2008, 1198-1199, 140-147.	3.7	16
66	Molecular Dynamic Simulations of the N-Terminal Receiver Domain of NtrC Reveal Intrinsic Conformational Flexibility in the Inactive State. Journal of Biomolecular Structure and Dynamics, 2006, 23, 509-517.	3.5	15
67	Effects of Competition on Selective Adsorption of Heteropolymers onto Heterogeneous Surfaces. Macromolecules, 2010, 43, 2069-2075.	4.8	15
68	A Monte Carlo study on LCCC characterization of graft copolymers at the critical condition of side chains. Polymer, 2015, 67, 47-54.	3.8	15
69	Exosomal Surface Protein Detection with Quantum Dots and Immunomagnetic Capture for Cancer Detection. Nanomaterials, 2021, 11, 1853.	4.1	14
70	The Exchange Kinetics of Macromolecules Adsorbed on a Solid Surface: A Theoretical Investigation. Macromolecules, 1995, 28, 7058-7063.	4.8	13
71	Confinement free energy and chain conformations of homopolymers confined between two repulsive walls. Journal of Chemical Physics, 2004, 121, 3898-3904.	3.0	13
72	Interactions of complex polymers with nanoporous substrate. Soft Matter, 2016, 12, 5245-5256.	2.7	13

5

#	Article	IF	CITATIONS
73	A Structural-Based Strategy for Recognition of Transcription Factor Binding Sites. PLoS ONE, 2013, 8, e52460.	2.5	13
74	Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1311-1323.	3.5	12
75	What Is the Distance to the Wall in Lattice Simulations?. Macromolecules, 2001, 34, 7121-7126.	4.8	11
76	Partitioning of polymers into pores with surface interactions at dilute solution limit. Polymer, 2004, 45, 313-320.	3.8	10
77	Comparison of Partitioning of a Bimodal Polymer Mixture into Micropores in Good and Ï [*] Solvents. A Monte Carlo Study. Macromolecules, 2002, 35, 1446-1450.	4.8	9
78	Polymer chains in good solvent facing impenetrable walls: what is the distance to the wall in lattice Monte Carlo simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 299-303.	4.7	9
79	Partitioning of bimodal polymer mixtures into a slit: effect of slit width, composition and pore-to-bulk volume ratio. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 305-312.	4.7	9
80	Quantitative analysis of oleic acid and three types of polyethers according to the number of hydroxy end groups in Polysorbate 80 by hydrophilic interaction chromatography at critical conditions. Journal of Chromatography A, 2013, 1272, 73-80.	3.7	9
81	Interplay of Coil–Globule Transition and Surface Adsorption of a Lattice HP Protein Model. Journal of Physical Chemistry B, 2014, 118, 14913-14921.	2.6	8
82	Near-field and far-field optical properties of magnetic plasmonic core-shell nanoparticles with non-spherical shapes: A discrete dipole approximation study. AIP Advances, 2019, 9, 025021.	1.3	8
83	Thermodynamics and partitioning of homopolymers into a slit-A grand canonical Monte Carlo simulation study. Journal of Chemical Physics, 2004, 121, 3905-3913.	3.0	7
84	Molecular dynamics and neutron scattering study of the dependence of polyelectrolyte dendrimer conformation on counterion behavior. Journal of Chemical Physics, 2012, 137, 064902.	3.0	7
85	Exchange Kinetics in Spherical Geometry. Langmuir, 1997, 13, 2348-2353.	3.5	6
86	Insights on the Coupling of Plasmonic Nanoparticles from Near-Field Spectra Determined via Discrete Dipole Approximations. Journal of Physical Chemistry C, 2021, 125, 5260-5268.	3.1	6
87	Effective-medium Gaussian-chain theory for semidilute polymer solutions confined to a slit. Journal of Chemical Physics, 2001, 115, 1105-1114.	3.0	5
88	Theory and Principles of Interaction Chromatography. ACS Symposium Series, 2018, , 19-30.	0.5	5
89	Vibrational spectra, DFT calculations, and conformations of 5′-chloro-1-isopropyl-7-azaindirubin-3′-oxime. Journal of Molecular Structure, 2013, 1048, 51-58. 	3.6	3
90	Coarseâ€Grained Simulations of the Impact of Chain Length and Stiffness on the Formation and Aggregation of Polyelectrolyte Complexes. Macromolecular Theory and Simulations, 2020, 29, 2000015.	1.4	3

#	Article	IF	CITATIONS
91	A Polymer Physics Perspective on Why PEI Is an Effective Nonviral Gene Delivery Vector. ACS Symposium Series, 2020, , 1-12.	0.5	3
92	Intramolecular vs intermolecular formation of bityrosine upon photoreaction of poly(l-tyrosine) in dilute aqueous solution. Polymer Bulletin, 1992, 28, 345-349.	3.3	1
93	Pairwise Interactions in the Critical Micelle Concentrations of Diblock Copolymers. ACS Symposium Series, 1993, , 45-52.	0.5	1
94	Multiscale molecular modeling and rational design of polymer based gene delivery vectors. Journal of Controlled Release, 2011, 152, e174-e176.	9.9	1
95	Structural Based Strategy for Predicting Transcription Factor Binding Sites. Bio-protocol, 2013, 3, .	0.4	0