
John R Reynolds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5945124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conquering residual light absorption in the transmissive states of organic electrochromic materials. Materials Horizons, 2022, 9, 252-260.	6.4	21
2	Social isolation and achievement of students with learning disabilities. Social Science Research, 2022, 104, 102667.	1.1	9
3	Highâ€Performance <i>n</i> â€Type Organic Electrochemical Transistors Enabled by Aqueous Solution Processing of Amphiphilicityâ€Driven Polymer Assembly. Advanced Functional Materials, 2022, 32, 2111950.	7.8	46
4	Revealing temperature-dependent polymer aggregation in solution with small-angle X-ray scattering. Journal of Materials Chemistry A, 2022, 10, 2096-2104.	5.2	8
5	Enhancement of Photostability through Side Chain Tuning in Dioxythiophene-Based Conjugated Polymers. Chemistry of Materials, 2022, 34, 1041-1051.	3.2	6
6	Significant Enhancement of the Electrical Conductivity of Conjugated Polymers by Post-Processing Side Chain Removal. Journal of the American Chemical Society, 2022, 144, 1351-1360.	6.6	42
7	Limitations of Diels–Alder Dynamic Covalent Networks as Thermal Conductivity Switches. ACS Applied Polymer Materials, 2022, 4, 1218-1224.	2.0	9
8	Long-Term Correlates of Racially Diverse Schooling: Education, Wealth, and Social Engagement in Later Life. Social Currents, 2022, 9, 427-458.	0.7	2
9	Minimizing Oxygen Permeability in Chitin/Cellulose Nanomaterial Coatings by Tuning Chitin Deacetylation. ACS Sustainable Chemistry and Engineering, 2022, 10, 124-133.	3.2	13
10	Probing Comonomer Selection Effects on Dioxythiophene-Based Aqueous-Compatible Polymers for Redox Applications. Chemistry of Materials, 2022, 34, 4633-4645.	3.2	20
11	Iron(III) Dopant Counterions Affect the Charge-Transport Properties of Poly(Thiophene) and Poly(Dialkoxythiophene) Derivatives. ACS Applied Materials & Interfaces, 2022, 14, 29039-29051.	4.0	5
12	Probing Crystallization Effects when Processing Bulk-Heterojunction Active Layers: Comparing Fullerene and Nonfullerene Acceptors. Chemistry of Materials, 2021, 33, 657-667.	3.2	8
13	Ester-functionalized, wide-bandgap derivatives of PM7 for simultaneous enhancement of photovoltaic performance and mechanical robustness of all-polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 2775-2783.	5.2	23
14	Photostability of Ambient-Processed, Conjugated Polymer Electrochromic Devices Encapsulated by Bioderived Barrier Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 2937-2945.	3.2	11
15	Guiding synthetic targets of anodically coloring electrochromes through density functional theory. Journal of Chemical Physics, 2021, 154, 054110.	1.2	5
16	Exploring Isomeric Effects on Optical and Electrochemical Properties of Red/Orange Electrochromic Polymers. Macromolecules, 2021, 54, 1677-1692.	2.2	15
17	Cost-Effective, Flexible, and Colorful Dynamic Displays: Removing Underlying Conducting Layers from Polymer-Based Electrochromic Devices. ACS Applied Materials & Interfaces, 2021, 13, 16732-16743.	4.0	29
18	Thermoelectric and Charge Transport Properties of Solution-Processable and Chemically Doped Dioxythienothiophene Copolymers. ACS Applied Polymer Materials, 2021, 3, 2316-2324.	2.0	12

#	Article	IF	CITATIONS
19	Assessing the Extreme Loneliness of Immigrant Farmworkers. Sociological Inquiry, 2021, 91, 696.	1.4	Ο
20	It Is Good to Be Flexible: Energy Transport Facilitated by Conformational Fluctuations in Light-Harvesting Polymers. Journal of Physical Chemistry B, 2021, 125, 5885-5896.	1.2	0
21	Branched Oligo(ether) Side Chains: A Path to Enhanced Processability and Elevated Conductivity for Polymeric Semiconductors. Advanced Functional Materials, 2021, 31, 2102688.	7.8	29
22	From Monomer to Conjugated Polymer: A Perspective on Best Practices for Synthesis. Chemistry of Materials, 2021, 33, 4842-4852.	3.2	19
23	Influence of Surface and Structural Variations in Donor–Acceptor–Donor Sensitizers on Photoelectrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 47499-47510.	4.0	3
24	Low-Defect, High Molecular Weight Indacenodithiophene (IDT) Polymers Via a C–H Activation: Evaluation of a Simpler and Greener Approach to Organic Electronic Materials. , 2021, 3, 1503-1512.		19
25	Charge-Transfer Intermediates in the Electrochemical Doping Mechanism of Conjugated Polymers. Journal of the American Chemical Society, 2021, 143, 294-308.	6.6	28
26	Public school accountability, workplace culture, and teacher morale. Social Science Research, 2020, 85, 102347.	1.1	11
27	Chemically Functionalized Reduced Graphene Oxide as Additives in Polyethylene Composites for Space Applications. Polymer Engineering and Science, 2020, 60, 86-94.	1.5	8
28	Structural effects on the charge transport properties of chemically and electrochemically doped dioxythiophene polymers. Journal of Materials Chemistry C, 2020, 8, 683-693.	2.7	22
29	Readily Dispersible Chemically Functionalized Reduced Graphene Oxide Nanosheets for Solution-Processable Electrodes and Conductive Coatings. ACS Applied Nano Materials, 2020, 3, 11455-11464.	2.4	8
30	Investigating the active layer thickness dependence of non-fullerene organic solar cells based on PM7 derivatives. Journal of Materials Chemistry C, 2020, 8, 15459-15469.	2.7	16
31	Organic Chromophores Designed for Hole Injection into Wide-Band-Gap Metal Oxides for Solar Fuel Applications. Chemistry of Materials, 2020, 32, 8158-8168.	3.2	12
32	Integrating Solution-Processable Conducting Polymers in Carbon Fiber Paper: Scalable 3D Electrodes for Redox-Based Supercapacitors. ACS Applied Polymer Materials, 2020, 2, 3234-3242.	2.0	8
33	Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance. Chemistry of Materials, 2020, 32, 6618-6628.	3.2	92
34	Side chain independent photovoltaic performance of thienopyrroledione conjugated donor–acceptor polymers. Journal of Materials Chemistry C, 2020, 8, 16452-16462.	2.7	2
35	Curious Case of BiEDOT: MALDI-TOF Mass Spectrometry Reveals Unbalanced Monomer Incorporation with Direct (Hetero)arylation Polymerization. Macromolecules, 2020, 53, 7253-7262.	2.2	15
36	Cosolvent Effects When Blade-Coating a Low-Solubility Conjugated Polymer for Bulk Heterojunction Organic Photovoltaics. ACS Applied Materials & Interfaces, 2020, 12, 27416-27424.	4.0	7

#	Article	IF	CITATIONS
37	Inducing planarity in redox-active conjugated polymers with solubilizing 3,6-dialkoxy-thieno[3,2-b]thiophenes (DOTTs) for redox and solid-state conductivity applications. Journal of Materials Chemistry C, 2020, 8, 7463-7475.	2.7	17
38	Effects of linear and branched side chains on the redox and optoelectronic properties of 3,4-dialkoxythiophene polymers. Polymer Chemistry, 2020, 11, 2173-2181.	1.9	24
39	Critical Role of Polymer Aggregation and Miscibility in Nonfullereneâ€Based Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 1902430.	10.2	41
40	Electrochromic selective filtering of chronodisruptive visible wavelengths. PLoS ONE, 2020, 15, e0241900.	1.1	1
41	Exploring the Utility of Buchwald Ligands for C–H Oxidative Direct Arylation Polymerizations. ACS Macro Letters, 2019, 8, 931-936.	2.3	18
42	Paperâ€Based Electrochromic Devices Enabled by Nanocelluloseâ€Coated Substrates. Advanced Functional Materials, 2019, 29, 1903487.	7.8	81
43	Fully Printed Organic Electrochemical Transistors from Green Solvents. Advanced Functional Materials, 2019, 29, 1905266.	7.8	42
44	Fine-Tuning the Color Hue of π-Conjugated Black-to-Clear Electrochromic Random Copolymers. Macromolecules, 2019, 52, 6773-6779.	2.2	47
45	Tuning Conjugated Polymers for Binder Applications in High-Capacity Magnetite Anodes. ACS Applied Energy Materials, 2019, 2, 7584-7593.	2.5	18
46	All Donor Electrochromic Polymers Tunable across the Visible Spectrum via Random Copolymerization. Chemistry of Materials, 2019, 31, 6841-6849.	3.2	40
47	Conductive, Solutionâ€Processed Dioxythiophene Copolymers for Thermoelectric and Transparent Electrode Applications. Advanced Energy Materials, 2019, 9, 1900395.	10.2	43
48	Thermoelectric Performance of nâ€Type Poly(Niâ€ŧetrathiooxalate) as a Counterpart to Poly(Niâ€ethenetetrathiolate): NiTTO versus NiETT. Advanced Electronic Materials, 2019, 5, 1900066.	2.6	14
49	Disentangling Redox Properties and Capacitance in Solution-Processed Conjugated Polymers. Chemistry of Materials, 2019, 31, 2971-2982.	3.2	50
50	New Design Paradigm for Color Control in Anodically Coloring Electrochromic Molecules. Journal of the American Chemical Society, 2019, 141, 3859-3862.	6.6	62
51	Heterogeneous forward and backward scattering modulation by polymer-infused plasmonic nanohole arrays. Journal of Materials Chemistry C, 2019, 7, 3090-3099.	2.7	8
52	Photovoltaic donor-acceptor conjugated polymers with minimally substituted acceptor moieties. Organic Electronics, 2019, 68, 280-284.	1.4	12
53	Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells. Chemistry of Materials, 2019, 31, 9729-9741.	3.2	15
54	Simple Interface Modification of Electroactive Polymer Film Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 47131-47142.	4.0	14

#	Article	IF	CITATIONS
55	Electrochromism in Conjugated Polymers – Strategies for Complete and Straightforward Color Control. , 2019, , 201-248.		3
56	Every Atom Counts: Elucidating the Fundamental Impact of Structural Change in Conjugated Polymers for Organic Photovoltaics. Chemistry of Materials, 2018, 30, 2995-3009.	3.2	39
57	Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4â€Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes. ChemSusChem, 2018, 11, 854-863.	3.6	115
58	Soluble phenylenedioxythiophene copolymers <i>via</i> direct (hetero)arylation polymerization: a revived monomer for organic electronics. Journal of Materials Chemistry C, 2018, 6, 1064-1070.	2.7	22
59	Chemical Oxidation of Polymer Electrodes for Redox Active Devices: Stabilization through Interfacial Interactions. ACS Applied Materials & Interfaces, 2018, 10, 970-978.	4.0	23
60	Natural Mentors, Social Class, and College Success. American Journal of Community Psychology, 2018, 61, 179-190.	1.2	16
61	Photocathode Chromophore–Catalyst Assembly via Layer-By-Layer Deposition of a Low Band-Gap Isoindigo Conjugated Polyelectrolyte. ACS Applied Energy Materials, 2018, 1, 62-67.	2.5	12
62	Langmuir–Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles. ACS Applied Materials & Interfaces, 2018, 10, 11995-12004.	4.0	17
63	Exploring unbalanced electrode configurations for electrochromic devices. Journal of Materials Chemistry C, 2018, 6, 393-400.	2.7	22
64	Multifunctional triphenylamine polymers synthesized <i>via</i> direct (hetero) arylation polymerization. Journal of Polymer Science Part A, 2018, 56, 147-153.	2.5	13
65	Impact of Nonfullerene Molecular Architecture on Charge Generation, Transport, and Morphology in PTB7â€Thâ€Based Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802702.	7.8	44
66	A Fruitful Usage of a Dialkylthiophene Comonomer for Redox Stable Wide-Gap Cathodically Coloring Electrochromic Polymers. Macromolecules, 2018, 51, 9250-9258.	2.2	28
67	Randomly Distributed Conjugated Polymer Repeat Units for High-Efficiency Photovoltaic Materials with Enhanced Solubility and Processability. ACS Applied Materials & Interfaces, 2018, 10, 44583-44588.	4.0	18
68	Aqueous Electrolyte Compatible Electrochromic Polymers Processed from an Environmentally Sustainable Solvent. ACS Macro Letters, 2018, 7, 1208-1214.	2.3	32
69	Donor Conjugated Polymers with Polar Side Chain Groups: The Role of Dielectric Constant and Energetic Disorder on Photovoltaic Performance. Advanced Functional Materials, 2018, 28, 1803418.	7.8	42
70	Balancing Charge Storage and Mobility in an Oligo(Ether) Functionalized Dioxythiophene Copolymer for Organic―and Aqueous―Based Electrochemical Devices and Transistors. Advanced Materials, 2018, 30, e1804647.	11.1	119
71	Effect of Heteroatom and Doping on the Thermoelectric Properties of Poly(3â€alkylchalcogenophenes). Advanced Energy Materials, 2018, 8, 1802419.	10.2	99
72	All Polymer Solution Processed Electrochromic Devices: A Future without Indium Tin Oxide?. ACS Applied Materials & Interfaces, 2018, 10, 31568-31579.	4.0	54

#	Article	IF	CITATIONS
73	Semi-transparent low-donor content organic solar cells employing cyclopentadithiophene-based conjugated molecules. Journal of Materials Chemistry C, 2018, 6, 10532-10537.	2.7	14
74	A new standard method to calculate electrochromic switching time. Solar Energy Materials and Solar Cells, 2018, 185, 54-60.	3.0	62
75	Systematic Power Factor Enhancement in nâ€Type NiETT/PVDF Composite Films. Advanced Functional Materials, 2018, 28, 1801620.	7.8	34
76	Conjugated Polymer Blends for High Contrast Blackâ€toâ€Transmissive Electrochromism. Advanced Optical Materials, 2018, 6, 1800594.	3.6	73
77	Visible-Light-Driven Photocatalytic Water Oxidation by a π-Conjugated Donor–Acceptor–Donor Chromophore/Catalyst Assembly. ACS Energy Letters, 2018, 3, 2114-2119.	8.8	30
78	Spray-Coated Multilayer Cellulose Nanocrystal—Chitin Nanofiber Films for Barrier Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 10637-10644.	3.2	102
79	Simultaneous Enhancement in Electrical Conductivity and Thermopower of nâ€ T ype NiETT/PVDF Composite Films by Annealing. Advanced Functional Materials, 2018, 28, 1803275.	7.8	39
80	Electrochromic Polymers Processed from Environmentally Benign Solvents. Chemistry of Materials, 2018, 30, 5161-5168.	3.2	32
81	Electrochromism of alkylene-linked discrete chromophore polymers with broad radical cation light absorption. Polymer Chemistry, 2018, 9, 3055-3066.	1.9	15
82	Increased Exciton Delocalization of Polymer upon Blending with Fullerene. Advanced Materials, 2018, 30, 1801392.	11.1	20
83	Effect of Polymer–Fullerene Interaction on the Dielectric Properties of the Blend. Advanced Energy Materials, 2017, 7, 1601947.	10.2	51
84	Direct Imide Formation from Thiophene Dicarboxylic Acids Gives Expanded Side-Chain Selection in Thienopyrrolediones. Organic Letters, 2017, 19, 996-999.	2.4	14
85	Discrete Donor–Acceptor Conjugated Systems in Neutral and Oxidized States: Implications toward Molecular Design for High Contrast Electrochromics. Chemistry of Materials, 2017, 29, 1290-1301.	3.2	56
86	Conjugated Polyelectrolytes as Water Processable Precursors to Aqueous Compatible Redox Active Polymers for Diverse Applications: Electrochromism, Charge Storage, and Biocompatible Organic Electronics. Chemistry of Materials, 2017, 29, 4385-4392.	3.2	78
87	Interfacial Dynamics within an Organic Chromophore-Based Water Oxidation Molecular Assembly. ACS Applied Materials & Interfaces, 2017, 9, 16651-16659.	4.0	5
88	Morphology Control in Films of Isoindigo Polymers by Side-Chain and Molecular Weight Effects. ACS Applied Materials & Interfaces, 2017, 9, 13357-13368.	4.0	26
89	Cyclometalated Platinum-Containing Diketopyrrolopyrrole Complexes and Polymers: Photophysics and Photovoltaic Applications. Chemistry of Materials, 2017, 29, 8449-8461.	3.2	27
90	Simple transfer from spin coating to blade coating through processing aggregated solutions. Journal of Materials Chemistry A, 2017, 5, 20687-20695.	5.2	21

#	Article	IF	CITATIONS
91	Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains. ACS Central Science, 2017, 3, 961-967.	5.3	43
92	Molecular weight tuning of low bandgap polymers by continuous flow chemistry: increasing the applicability of PffBT4T for organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 18166-18175.	5.2	23
93	Electrochromic tuning of transparent gold nanorods with poly[(3,4-propylenedioxy)pyrrole] shells in the near-infrared region. Journal of Materials Chemistry C, 2017, 5, 12571-12584.	2.7	15
94	Latina/o Students in Majority White Schools. Sociology of Race and Ethnicity (Thousand Oaks, Calif), 2017, 3, 113-125.	0.6	7
95	Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes. Journal of Materials Chemistry A, 2017, 5, 23887-23897.	5.2	40
96	Metalloâ€organic nâ€ŧype thermoelectrics: Emphasizing advances in nickelâ€ethenetetrathiolates. Journal of Applied Polymer Science, 2017, 134, .	1.3	26
97	Full Color Control and Highâ€Resolution Patterning from Inkjet Printable Cyan/Magenta/Yellow Coloredâ€ŧoâ€Colorless Electrochromic Polymer Inks. Advanced Materials Technologies, 2016, 1, 1600063.	3.0	35
98	Efficient Light-Driven Oxidation of Alcohols Using an Organic Chromophore–Catalyst Assembly Anchored to TiO ₂ . ACS Applied Materials & Interfaces, 2016, 8, 9125-9133.	4.0	34
99	Evidence of Molecular Structure Dependent Charge Transfer between Isoindigo-Based Polymers and Fullerene. Chemistry of Materials, 2016, 28, 2433-2440.	3.2	32
100	Electrically Controlled Plasmonic Behavior of Gold Nanocube@Polyaniline Nanostructures: Transparent Plasmonic Aggregates. Chemistry of Materials, 2016, 28, 2868-2881.	3.2	67
101	Heteroatom Role in Polymeric Dioxyselenophene/Dioxythiophene Systems for Color and Redox Control. ACS Macro Letters, 2016, 5, 714-717.	2.3	20
102	Twisted Thiophene-Based Chromophores with Enhanced Intramolecular Charge Transfer for Cooperative Amplification of Third-Order Optical Nonlinearity. Journal of the American Chemical Society, 2016, 138, 6975-6984.	6.6	102
103	Structure–Property Relationships Directing Transport and Charge Separation in Isoindigo Polymers. Macromolecules, 2016, 49, 4008-4022.	2.2	38
104	Solution Processed PEDOT Analogues in Electrochemical Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 13492-13498.	4.0	65
105	Design of Hybrid Electrochromic Materials with Large Electrical Modulation of Plasmonic Resonances. ACS Applied Materials & amp; Interfaces, 2016, 8, 13064-13075.	4.0	37
106	Dual-Responsive Reversible Plasmonic Behavior of Core–Shell Nanostructures with pH-Sensitive and Electroactive Polymer Shells. Chemistry of Materials, 2016, 28, 7551-7563.	3.2	48
107	Structural and morphological effects of alkyl side chains on flanking thiophenes of diketopyrrolopyrrole polymers for organic photovoltaic devices. Polymer, 2016, 99, 741-747.	1.8	20
108	CONDUCTING POLYMERS: REDOX STATES IN CONJUGATED SYSTEMS. Materials and Energy, 2016, , 1-18.	2.5	3

#	Article	IF	CITATIONS
109	Role of Macromolecular Structure in the Ultrafast Energy and Electron Transfer Dynamics of a Light-Harvesting Polymer. Journal of Physical Chemistry B, 2016, 120, 7937-7948.	1.2	7
110	Relax: A Sterically Relaxed Donor–Acceptor Approach for Color Tuning in Broadly Absorbing, High Contrast Electrochromic Polymers. Macromolecules, 2016, 49, 6350-6359.	2.2	64
111	Halochromism and protonation-induced assembly of a benzo[g]indolo[2,3-b]quinoxaline derivative. Chemical Communications, 2016, 52, 12877-12880.	2.2	34
112	Tuning Color, Contrast, and Redox Stability in High Gap Cathodically Coloring Electrochromic Polymers. Macromolecules, 2016, 49, 8498-8507.	2.2	58
113	Photodegradation of Metal Oxide Interlayers in Polymer Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600741.	1.9	8
114	School Gender Culture and Student Subjective Well-Being. Sex Roles, 2016, 74, 62-77.	1.4	7
115	Ambipolar Charge Transport in Isoindigo-Based Donor–Acceptor Polymers. Chemistry of Materials, 2016, 28, 1286-1297.	3.2	83
116	Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cells by Co-Sensitization of Benzothiadiazole and Squaraine-Based Dyes. ACS Applied Materials & Interfaces, 2016, 8, 4616-4623.	4.0	61
117	Designing a Soluble PEDOT Analogue without Surfactants or Dispersants. Macromolecules, 2016, 49, 2106-2111.	2.2	74
118	Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer. ACS Applied Materials & Interfaces, 2016, 8, 16-19.	4.0	14
119	The interplay between structure, processing, and properties in organic photovoltaic devices: how to translate recent laboratory-scale developments to modules. MRS Communications, 2015, 5, 155-167.	0.8	7
120	Probing film solidification dynamics in polymer photovoltaics. Organic Electronics, 2015, 25, 57-65.	1.4	11
121	Ultrafast Dynamics in Multifunctional Ru(II)-Loaded Polymers for Solar Energy Conversion. Accounts of Chemical Research, 2015, 48, 818-827.	7.6	35
122	High Efficiency Air-Processed Dithienogermole-Based Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4826-4832.	4.0	34
123	An Electrochromic Painter's Palette: Color Mixing via Solution Co-Processing. ACS Applied Materials & Interfaces, 2015, 7, 1406-1412.	4.0	80
124	Four Shades of Brown: Tuning of Electrochromic Polymer Blends Toward High-Contrast Eyewear. ACS Applied Materials & Interfaces, 2015, 7, 1413-1421.	4.0	197
125	Process controlled performance for soluble electrochromic polymers. Solar Energy Materials and Solar Cells, 2015, 140, 54-60.	3.0	58
126	Where Does Debt Fit in the Stress Process Model?. Society and Mental Health, 2015, 5, 16-32.	1.2	64

#	Article	IF	CITATIONS
127	Ru(bpy) ₃ ²⁺ derivatized polystyrenes constructed by nitroxide-mediated radical polymerization. Relationship between polymer chain length, structure and photophysical properties. Polymer Chemistry, 2015, 6, 8184-8193.	1.9	23
128	Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. Journal of Materials Chemistry C, 2015, 3, 9715-9725.	2.7	72
129	End Capping Does Matter: Enhanced Order and Charge Transport in Conjugated Donor–Acceptor Polymers. Macromolecules, 2015, 48, 6369-6377.	2.2	48
130	Heteroannulated acceptors based on benzothiadiazole. Materials Horizons, 2015, 2, 22-36.	6.4	123
131	Solution Processed Polymer Near-Infrared Photodiode With Electron and Hole Blockers. IEEE Transactions on Electron Devices, 2014, 61, 3852-3857.	1.6	11
132	Understanding the effects of electrochemical parameters on the areal capacitance of electroactive polymers. Journal of Materials Chemistry A, 2014, 2, 7509-7516.	5.2	17
133	A Vertically Integrated Solarâ€Powered Electrochromic Window for Energy Efficient Buildings. Advanced Materials, 2014, 26, 4895-4900.	11.1	134
134	Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials, 2014, 26, 664-678.	3.2	319
135	Light Harvesting and Charge Separation in a π-Conjugated Antenna Polymer Bound to TiO ₂ . Journal of Physical Chemistry C, 2014, 118, 28535-28541.	1.5	31
136	Quadrupolar (donor)2acceptor-acid chromophores for dye-sensitized solar cells: influence of the core acceptor. Journal of Materials Chemistry A, 2014, 2, 9866.	5.2	12
137	Effect of Isomerism and Chain Length on Electronic Structure, Photophysics, and Sensitizer Efficiency in Quadrupolar (Donor) ₂ –Acceptor Systems for Application in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5221-5227.	4.0	27
138	Follow the Yellow Brick Road: Structural Optimization of Vibrant Yellow-to-Transmissive Electrochromic Conjugated Polymers. Macromolecules, 2014, 47, 5462-5469.	2.2	109
139	Panchromatic Donor–Acceptor–Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications. ACS Applied Materials & Interfaces, 2014, 6, 8715-8722.	4.0	59
140	Electrically Tunable Plasmonic Behavior of Nanocube–Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer. ACS Nano, 2014, 8, 6182-6192.	7.3	347
141	Poly(fluorene-co-thiophene)-based ionic transition-metal complex polymers for solar energy harvesting and storage applications. Polymer Chemistry, 2014, 5, 2363.	1.9	33
142	Investigation of the Role of the Acceptor Molecule in Bulk Heterojunction Photovoltaic Cells Using Impedance Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 13798-13804.	1.5	13
143	Direct (Hetero)arylation Polymerization: An Effective Route to 3,4-Propylenedioxythiophene-Based Polymers with Low Residual Metal Content. ACS Macro Letters, 2013, 2, 869-873.	2.3	127
144	Understanding the Electronic Structure of Isoindigo in Conjugated Systems: A Combined Theoretical and Experimental Approach Macromolecules, 2013, 46, 8832-8844.	2.2	63

#	Article	IF	CITATIONS
145	Optimization of PEDOT Films in Ionic Liquid Supercapacitors: Demonstration As a Power Source for Polymer Electrochromic Devices. ACS Applied Materials & amp; Interfaces, 2013, 5, 13432-13440.	4.0	114
146	Ultrafast Formation of a Long-Lived Charge-Separated State in a Ru-Loaded Poly(3-hexylthiophene) Light-Harvesting Polymer. Journal of Physical Chemistry Letters, 2013, 4, 2269-2273.	2.1	22
147	Direct Photopatterning of Electrochromic Polymers. Advanced Functional Materials, 2013, 23, 3728-3737.	7.8	63
148	Solutionâ€Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Advanced Functional Materials, 2013, 23, 2993-3001.	7.8	461
149	Loss Mechanisms in Thickâ€Film Lowâ€Bandgap Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 909-916.	10.2	52
150	Racial Mismatch in the Classroom. Sociology of Education, 2013, 86, 3-17.	1.7	151
151	Fast Switching Water Processable Electrochromic Polymers. ACS Applied Materials & Interfaces, 2012, 4, 6512-6521.	4.0	88
152	Neither a Borrower Nor a Lender Be. Journal of Aging and Health, 2012, 24, 673-695.	0.9	155
153	A Diels–Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. Journal of Materials Chemistry, 2012, 22, 3004.	6.7	22
154	Inverted Polymer Solar Cells. IEEE Photonics Journal, 2012, 4, 625-628.	1.0	6
155	Supercapacitors Based on Polymeric Dioxypyrroles and Single Walled Carbon Nanotubes. Chemistry of Materials, 2012, 24, 433-443.	3.2	50
156	Competition between Ultrafast Energy Flow and Electron Transfer in a Ru(II)-Loaded Polyfluorene Light-Harvesting Polymer. Journal of Physical Chemistry Letters, 2012, 3, 2453-2457.	2.1	30
157	A minimally coloured dioxypyrrole polymer as a counter electrode material in polymeric electrochromic window devices. Journal of Materials Chemistry, 2012, 22, 4953.	6.7	69
158	Structure-Performance Correlations in Spray-Processable Green Dioxythiophene-Benzothiadiazole Donor–Acceptor Polymer Electrochromes. Chemistry of Materials, 2012, 24, 255-268.	3.2	91
159	Control of Charge-Carrier Mobility via In-Chain Spacer Length Variation in Sequenced Triarylamine Functionalized Polyolefins. ACS Macro Letters, 2012, 1, 324-327.	2.3	14
160	Dioxypyrrole-Based Polymers via Dehalogenation Polycondensation Using Various Electrophilic Halogen Sources. Macromolecules, 2012, 45, 5842-5849.	2.2	12
161	High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nature Photonics, 2012, 6, 115-120.	15.6	903
162	Poly[Bis-EDOT-Isoindigo]: An Electroactive Polymer Applied to Electrochemical Supercapacitors. Macromolecules, 2012, 45, 8211-8220.	2.2	104

#	Article	IF	CITATIONS
163	An isoindigo and dithieno[3,2-b:2′,3′-d]silole copolymer for polymer solar cells. Polymer Chemistry, 2012, 3, 89-92.	1.9	84
164	Manufacture and demonstration of organic photovoltaicâ€powered electrochromic displays using roll coating methods and printable electrolytes. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 536-545.	2.4	93
165	Improved Performance of Molecular Bulkâ€Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives. Advanced Functional Materials, 2012, 22, 4801-4813.	7.8	149
166	Inverted Polymer Solar Cells with Reduced Interface Recombination. Advanced Energy Materials, 2012, 2, 1333-1337.	10.2	210
167	Establishing Dual Electrogenerated Chemiluminescence and Multicolor Electrochromism in Functional Ionic Transition-Metal Complexes. Journal of the American Chemical Society, 2012, 134, 968-978.	6.6	83
168	It Takes More Than an Imine: The Role of the Central Atom on the Electron-Accepting Ability of Benzotriazole and Benzothiadiazole Oligomers. Journal of the American Chemical Society, 2012, 134, 2599-2612.	6.6	135
169	Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers. Journal of the American Chemical Society, 2012, 134, 8944-8957.	6.6	124
170	Photophysical Properties of Near-Infrared Phosphorescent π-Extended Platinum Porphyrins. Chemistry of Materials, 2011, 23, 5296-5304.	3.2	143
171	Donor–Acceptor–Donor-based ï€-Conjugated Oligomers for Nonlinear Optics and Near-IR Emission. Chemistry of Materials, 2011, 23, 3805-3817.	3.2	189
172	Electron rich APFO polymer with dual electrochromism and electroluminescence. Journal of Materials Chemistry, 2011, 21, 6480.	6.7	10
173	Self-Assembled Amphiphilic Diketopyrrolopyrrole-Based Oligothiophenes for Field-Effect Transistors and Solar Cells. Chemistry of Materials, 2011, 23, 2285-2288.	3.2	80
174	Material Strategies for Black-to-Transmissive Window-Type Polymer Electrochromic Devices. ACS Applied Materials & Interfaces, 2011, 3, 1022-1032.	4.0	118
175	Completing the Color Palette with Spray-Processable Polymer Electrochromics. ACS Applied Materials & Interfaces, 2011, 3, 1787-1795.	4.0	221
176	n-Type Conjugated Polyisoindigos. Macromolecules, 2011, 44, 6303-6310.	2.2	156
177	Navigating the Color Palette of Solution-Processable Electrochromic Polymers. Chemistry of Materials, 2011, 23, 397-415.	3.2	420
178	Propylenedioxythiophene (ProDOT)–phenylene copolymers allow a yellow-to-transmissive electrochrome. Polymer Chemistry, 2011, 2, 812.	1.9	82
179	Extended Conjugation Platinum(II) Porphyrins for use in Near-Infrared Emitting Organic Light Emitting Diodes. Chemistry of Materials, 2011, 23, 5305-5312.	3.2	226
180	Dithienogermole As a Fused Electron Donor in Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2011, 133, 10062-10065.	6.6	693

#	Article	IF	CITATIONS
181	Polydimethylsiloxane as a Macromolecular Additive for Enhanced Performance of Molecular Bulk Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 1210-1215.	4.0	108
182	Conjugated polymers for pure UV light emission: Poly(<i>meta</i> â€phenylenes). Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 557-565.	2.4	13
183	In Situ Spectroscopic Analysis of Subâ€6econd Switching Polymer Electrochromes. Advanced Functional Materials, 2011, 21, 4535-4542.	7.8	15
184	Photo arrier Recombination in Polymer Solar Cells Based on P3HT and Siloleâ€Based Copolymer. Advanced Energy Materials, 2011, 1, 963-969.	10.2	52
185	Change in the Stratification of Educational Expectations and Their Realization. Social Forces, 2011, 90, 85-109.	0.9	61
186	Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chemical Reviews, 2010, 110, 268-320.	23.0	1,603
187	Color Tunable π-Conjugated Polymers for Solar-Cell Applications: Engineering of Bandgap, Interface, and Charge Transport Properties. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1792-1800.	1.9	5
188	Sprayâ€Processable Blueâ€ŧoâ€Highly Transmissive Switching Polymer Electrochromes via the Donor–Acceptor Approach. Advanced Materials, 2010, 22, 724-728.	11.1	145
189	Broadly Absorbing Black to Transmissive Switching Electrochromic Polymers. Advanced Materials, 2010, 22, 4949-4953.	11.1	158
190	A Sideâ€Chain Defunctionalization Approach Yields a Polymer Electrochrome Sprayâ€Processable from Water. Advanced Materials, 2010, 22, 5383-5387.	11.1	65
191	Is There a Downside to Shooting for the Stars? Unrealized Educational Expectations and Symptoms of Depression. American Sociological Review, 2010, 75, 151-172.	2.8	95
192	Isoindigo-Based Donorâ^'Acceptor Conjugated Polymers. Macromolecules, 2010, 43, 8348-8352.	2.2	193
193	Orange and Red to Transmissive Electrochromic Polymers Based on Electron-Rich Dioxythiophenes. Macromolecules, 2010, 43, 4460-4467.	2.2	149
194	Spectral Engineering in Ï€-Conjugated Polymers with Intramolecular Donorâ^'Acceptor Interactions. Accounts of Chemical Research, 2010, 43, 1396-1407.	7.6	568
195	Dioxythiophene-Based Polymer Electrodes for Supercapacitor Modules. ACS Applied Materials & Interfaces, 2010, 2, 3586-3593.	4.0	91
196	Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism. Journal of Materials Chemistry, 2010, 20, 123-134.	6.7	154
197	Green Dioxythiophene-Benzothiadiazole Donorâ [°] Acceptor Copolymers for Photovoltaic Device Applications. Chemistry of Materials, 2010, 22, 2093-2106.	3.2	73
198	Novel Bis-arylPheDOT Synthons for Electrochromic Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 47, 6-11.	1.2	6

#	Article	IF	CITATIONS
199	Conjugated Polyelectrolytes: Synthesis, Photophysics, and Applications. Angewandte Chemie - International Edition, 2009, 48, 4300-4316.	7.2	670
200	Low-Band-Gap Platinum Acetylide Polymers as Active Materials for Organic Solar Cells. ACS Applied Materials & Interfaces, 2009, 1, 150-161.	4.0	135
201	Color Purity in Polymer Electrochromic Window Devices on Indiumâ^'Tin Oxide and Single-Walled Carbon Nanotube Electrodes. ACS Applied Materials & Interfaces, 2009, 1, 2288-2297.	4.0	64
202	Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers. Journal of Applied Physics, 2009, 106, .	1.1	62
203	Unsaturated Linkages in Dioxythiopheneâ^'Benzothiadiazole Donorâ^'Acceptor Electrochromic Polymers: The Key Role of Conformational Freedom. Macromolecules, 2009, 42, 3694-3706.	2.2	84
204	Black to Transmissive Switching in a Pseudo Three-Electrode Electrochromic Device. Chemistry of Materials, 2009, 21, 5145-5153.	3.2	81
205	A Spray-Processable, Low Bandgap, and Ambipolar Donorâ^'Acceptor Conjugated Polymer. Journal of the American Chemical Society, 2009, 131, 2824-2826.	6.6	214
206	Improving the contrast of all-printed electrochromic polymer on paper displays. Journal of Materials Chemistry, 2009, 19, 1799.	6.7	140
207	Interchain interactions in poly(benzo[1,2-b:4,3-bâ€2]dithiophene)s and the effect of substituents on aggregation. Journal of Materials Chemistry, 2009, 19, 4197.	6.7	9
208	Absurdly Ambitious? Teenagers' Expectations for the Future and the Realities of Social Structure. Sociology Compass, 2008, 2, 944-962.	1.4	52
209	Educational expectations and the rise in women's post-secondary attainments. Social Science Research, 2008, 37, 485-499.	1.1	90
210	Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers. Applied Physics Letters, 2008, 93, 163305.	1.5	59
211	Dual-Polymer Electrochromic Film Characterization Using Bipotentiostatic Control. Chemistry of Materials, 2008, 20, 2328-2334.	3.2	41
212	Discrete Photopatternable π-Conjugated Oligomers for Electrochromic Devices. Journal of the American Chemical Society, 2008, 130, 9734-9746.	6.6	122
213	Processable, Electroactive, and Aqueous Compatible Poly(3,4-alkylenedioxypyrrole)s through a Functionally Tolerant Deiodination Condensation Polymerization. Macromolecules, 2008, 41, 691-700.	2.2	35
214	Hyperbranched Conjugated Polyelectrolyte Bilayers for Solar-Cell Applications. Journal of the American Chemical Society, 2007, 129, 8958-8959.	6.6	135
215	Electrochromic properties of a fast switching, dual colour polythiophene bearing non-planar dithiinoquinoxaline units. Journal of Materials Chemistry, 2007, 17, 225-231.	6.7	54
216	Base-Free Suzuki Polymerization for the Synthesis of Polyfluorenes Functionalized with Carboxylic Acids. Macromolecules, 2007, 40, 3524-3526.	2.2	43

#	Article	IF	CITATIONS
217	Tethered PProDOTs: conformationally restricted 3,4-propylenedioxythiophene based electroactive polymers. Journal of Materials Chemistry, 2007, 17, 254-260.	6.7	21
218	Chiral Ethylhexyl Substituents for Optically Active Aggregates of π-Conjugated Polymers. Journal of the American Chemical Society, 2007, 129, 10694-10699.	6.6	88
219	Isoregic Thienyleneâ€Phenylene Polymers: The Effects of Structural Variation and Application to Photovoltaic Devices. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 665-674.	1.2	5
220	Defunctionalization of Ester-Substituted Electrochromic Dioxythiophene Polymers. Macromolecules, 2007, 40, 5344-5352.	2.2	86
221	Regiosymmetric Poly(dialkylphenylenedioxythiophene)s: Electron-Rich, Stackable ï€-Conjugated Nanoribbons. Angewandte Chemie - International Edition, 2007, 46, 714-717.	7.2	74
222	Amplified fluorescence quenching and biosensor application of a poly (para-phenylene) cationic polyelectrolyte. Research on Chemical Intermediates, 2007, 33, 79-90.	1.3	11
223	Spectral Broadening in Nanocrystalline TiO2 Solar Cells Based on Poly(p-phenylene ethynylene) and Polythiophene Sensitizers. Chemistry of Materials, 2006, 18, 6109-6111.	3.2	82
224	Soluble Narrow Band Gap and Blue Propylenedioxythiophene-Cyanovinylene Polymers as Multifunctional Materials for Photovoltaic and Electrochromic Applications. Journal of the American Chemical Society, 2006, 128, 12714-12725.	6.6	379
225	Cross-Linked Hyperbranched Arylamine Polymers as Hole-Transporting Materials for Polymer LEDs. Macromolecules, 2006, 39, 7789-7792.	2.2	85
226	Variable Band Gap Poly(arylene ethynylene) Conjugated Polyelectrolytes. Macromolecules, 2006, 39, 6355-6366.	2.2	158
227	Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27, 2-18.	2.0	936
228	Platinum–acetylide polymer based solar cells: involvement of the triplet state for energy conversion. Chemical Communications, 2006, , 1887-1889.	2.2	182
229	Donor-acceptor copolymers for red- and near-infrared-emitting polymer light-emitting diodes. Journal of Polymer Science Part A, 2005, 43, 1417-1431.	2.5	96
230	The Job Costs of Family Demands. Journal of Family Issues, 2005, 26, 275-299.	1.0	122
231	Variable band gap conjugated polymers for optoelectronic and redox applications. Journal of Materials Research, 2005, 20, 3188-3198.	1.2	44
232	Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinyleneâ^'Dioxythiophene Polymer. Macromolecules, 2005, 38, 5359-5362.	2.2	217
233	Tuning Polymer Light-Emitting Device Emission Colors in Ternary Blends Composed of Conjugated and Nonconjugated Polymers. Macromolecules, 2005, 38, 7660-7669.	2.2	62
234	Line patterning for flexible and laterally configured electrochromic devices. Journal of Materials Chemistry, 2005, 15, 1793.	6.7	51

#	Article	IF	CITATIONS
235	In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue. Journal of Materials Chemistry, 2005, 15, 2226.	6.7	111
236	Electrochromic conjugated N-salicylidene-aniline (anil) functionalized pyrrole and 2,5-dithienylpyrrole-based polymers. New Journal of Chemistry, 2005, 29, 1128.	1.4	45
237	Alkoxysulfonate-Functionalized PEDOT Polyelectrolyte Multilayer Films:Â Electrochromic and Hole Transport Materials. Macromolecules, 2005, 38, 3068-3074.	2.2	93
238	Transparent, Conductive Carbon Nanotube Films. Science, 2004, 305, 1273-1276.	6.0	2,797
239	Donor-Mediated Band Gap Reduction in a Homologous Series of Conjugated Polymers. Journal of the American Chemical Society, 2004, 126, 16440-16450.	6.6	90
240	Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays. Chemistry of Materials, 2004, 16, 2386-2393.	3.2	79
241	Spray Coatable Electrochromic Dioxythiophene Polymers with High Coloration Efficiencies. Macromolecules, 2004, 37, 7559-7569.	2.2	324
242	Multicolored Electrochromism in Polymers: Structures and Devices. Chemistry of Materials, 2004, 16, 4401-4412.	3.2	745
243	N-Substituted Poly(3,4-propylenedioxypyrrole)s:Â High Gap and Low Redox Potential Switching Electroactive and Electrochromic Polymers. Macromolecules, 2003, 36, 639-647.	2.2	170
244	Electrochromic devices based on soluble and processable dioxythiophene polymersElectronic supplementary information (ESI) available: details of the synthesis of PProDOT(CH2OC18H37)2 and PProDOT(CH2OEtHx)2 and their polymerization. See http://www.rsc.org/suppdata/jm/b3/b306365h/. Journal of Materials Chemistry, 2003, 13, 2422.	6.7	156
245	Direct Strain Measurement of Polypyrrole Actuators Controlled by the Polymer/Gold Interface. Chemistry of Materials, 2003, 15, 916-922.	3.2	82
246	3,4-Alkylenedioxy ring formation via double Mitsunobu reactions: an efficient route for the synthesis of 3,4-ethylenedioxythiophene (EDOT) and 3,4-propylenedioxythiophene (ProDOT) derivatives as monomers for electron-rich conducting polymers. Chemical Communications, 2002, , 2498-2499.	2.2	35
247	Enhanced Contrast Dual Polymer Electrochromic Devices. Chemistry of Materials, 2002, 14, 3118-3122.	3.2	262
248	Regiosymmetric Dibutyl-Substituted Poly(3,4-propylenedioxythiophene)s as Highly Electron-Rich Electroactive and Luminescent Polymers. Macromolecules, 2002, 35, 6517-6525.	2.2	140
249	3,4-Alkylenedioxypyrroles:Â Functionalized Derivatives as Monomers for New Electron-Rich Conducting and Electroactive Polymers. Journal of Organic Chemistry, 2001, 66, 6873-6882.	1.7	69
250	Highly transmissive and conductive poly[(3,4Âalkylenedioxy)pyrroleÂ2,5Âdiyl] (PXDOP) films prepared by air or transition metal catalyzed chemical oxidation. Journal of Materials Chemistry, 2001, 11, 289-294.	6.7	56
251	Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes. Journal of Polymer Science Part A, 2001, 39, 2164-2178.	2.5	57
252	Rising College Expectations among Youth in the United States: A Comparison of the 1979 and 1997 NLSY. Journal of Human Resources, 2001, 36, 703.	1.9	93

#	Article	IF	CITATIONS
253	Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes. , 2001, 39, 2164.		1
254	Age, Depression, and Attrition in the National Survey of Families and Households. Sociological Methods and Research, 2000, 28, 476-504.	4.3	65
255	In Situ Colorimetric Analysis of Electrochromic Polymers and Devices. Chemistry of Materials, 2000, 12, 1563-1571.	3.2	247
256	Use of Conducting Electroactive Polymers for Drug Delivery and Sensing of Bioactive Molecules. A Redox Chemistry Approach. Journal of Physical Chemistry B, 2000, 104, 4080-4090.	1.2	275
257	Poly(3,4-alkylenedioxypyrrole)s:Â Highly Stable Electronically Conducting and Electrochromic Polymers. Macromolecules, 2000, 33, 7051-7061.	2.2	177
258	Water-Soluble and Blue Luminescent Cationic Polyelectrolytes Based on Poly(p-phenylene). Macromolecules, 1999, 32, 3970-3978.	2.2	129
259	Förster Energy Transfer Studies of Polyelectrolyte Heterostructures Containing Conjugated Polymers: A Means To Estimate Layer Interpenetration. Langmuir, 1999, 15, 6460-6469.	1.6	97
260	Lowering the Band Gap of Ethylenedioxythiophene Polymers: Cyanovinylene-Linked Biheterocycles. ACS Symposium Series, 1999, , 367-373.	0.5	1
261	Thin-Film Light-Emitting Devices Based on Sequentially Adsorbed Multilayers of Water-Soluble Poly(p-phenylene)s. Advanced Materials, 1998, 10, 1452-1455.	11.1	116
262	Tuning the band gap of easily oxidized bis(2-thienyl)- and bis(2-(3,4-ethylenedioxythiophene))-phenylene polymers. Polymers for Advanced Technologies, 1998, 9, 260-265.	1.6	16
263	In situ conductivity studies of poly(3,4-ethylenedioxythiophene). Synthetic Metals, 1998, 92, 57-61.	2.1	128
264	Conducting Poly(3,4-alkylenedioxythiophene) Derivatives as Fast Electrochromics with High-Contrast Ratios. Chemistry of Materials, 1998, 10, 896-902.	3.2	462
265	Dual-color polymer light-emitting pixels processed by hybrid inkjet printing. Applied Physics Letters, 1998, 73, 2561-2563.	1.5	139
266	Tunable Redox and Optical Properties Using Transition Metal-Complexed Polythiophenes. Macromolecules, 1997, 30, 673-675.	2.2	75
267	High-Contrast Electrochromic Polymers from Alkyl-Derivatized Poly(3,4-ethylenedioxythiophenes). Macromolecules, 1997, 30, 2582-2588.	2.2	243
268	Ultraviolet-Emitting, Alkoxy-Functionalized Poly(m-phenylene). Macromolecules, 1997, 30, 479-481.	2.2	28
269	Poly(3,4-ethylenedioxythiophene) (PEDOT) prepared via electrochemical polymerization of EDOT, 2,2?-Bis(3,4-ethylenedioxythiophene) (BiEDOT), and their TMS derivatives. Advanced Materials, 1997, 9, 795-798.	11.1	170
270	Comparative reactivity of thiophene and 3,4-(ethylenedioxy)thiophene as terminal electropolymerizable units in bis-heterocycle arylenes. Journal of Polymer Science Part A, 1997, 35, 3627-3636.	2.5	37

#	Article	IF	CITATIONS
271	Preparation, Structure, and Properties of an Anionic Tetrameric Copper Complex Containing a Planar, Eight-Membered Ring Core. Inorganic Chemistry, 1996, 35, 793-796.	1.9	22
272	Electrochromic Conducting Polymers via Electrochemical Polymerization of Bis(2-(3,4-ethylenedioxy)thienyl) Monomers. Chemistry of Materials, 1996, 8, 882-889.	3.2	328
273	Soluble Alkyl-Substituted Poly(ethylenedioxythiophenes) as Electrochromic Materials. Macromolecules, 1996, 29, 7629-7630.	2.2	150
274	Electrochromic and Redox Electroactive Polymers Based on Ethylenedioxythiophene Derivatives. Materials Research Society Symposia Proceedings, 1995, 413, 373.	0.1	0
275	Electrochemically mediated polymerization of 2-pentadecylaniline confined to a planar liquid-liquid interface. Macromolecular Chemistry and Physics, 1995, 196, 2011-2021.	1.1	Ο
276	Electrochemical Doping of Poly(<i>p</i> -Phenylene Vinylene) Thin Films. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 1049-1060.	1.2	4
277	Charge and Ion Transport in Poly(pyrrole copper phthalocyanine tetrasulfonate) during Redox Switching. Journal of the Electrochemical Society, 1994, 141, 35-40.	1.3	74
278	Luminescent polymers with discrete emitter units. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2395-2404.	2.4	27
279	Structural Characterization of Poly(α-Fluoroacrylonitrile) and Poly(Ethyl α-Fluoroacrylate). Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 721-736.	1.2	3
280	Rapid Ion Exchange during Redox Switching of Poly(3-methylthiophene) Studied by X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry, 1994, 98, 13636-13642.	2.9	16
281	Water-Soluble Rigid-Rod Polyelectrolytes: A New Self-Doped, Electroactive Sulfonatoalkoxy-Substituted Poly(p-phenylene). Macromolecules, 1994, 27, 1975-1977.	2.2	117
282	Optical Absorption, Luminescence, And Redox Switching Properties Of Polyphenylene Derivatives. Materials Research Society Symposia Proceedings, 1993, 328, 191.	0.1	8
283	Poly(1,3-cyclohexadiene-alt-α-fluoroacrylonitrile): Synthesis and structural analysis of a new alternating copolymer. Journal of Polymer Science Part A, 1992, 30, 967-976.	2.5	Ο
284	Electrochemically initiated chain polymerization of pyrrole in aqueous media. Journal of Polymer Science Part A, 1992, 30, 1315-1325.	2.5	66
285	Self-doped conducting copolymers: a charge and mass transport study of poly{pyrrole-CO[3-(pyrrol-1-YL)propanesulfonate]}. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 250, 355-371.	0.3	102
286	Magnetic and Transport Properties of Electrochemically Oxidized Polyacetylene. Journal of the Electrochemical Society, 1985, 132, 1131-1135.	1.3	26