
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5944947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperbranched flame retardant for epoxy resin modification: Simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature. Chemical Engineering Journal, 2022, 428, 131226.	12.7	95
2	A synergetic strategy of well dispersing hydrophilic Ti3C2Tx MXene into hydrophobic polybenzoxazine composites for improved comprehensive performances. Composites Science and Technology, 2022, 219, 109248.	7.8	24
3	Design of controllable degradable epoxy resin: High performance and feasible upcycling. Polymers for Advanced Technologies, 2022, 33, 1665-1676.	3.2	4
4	Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers, 2022, 14, 625.	4.5	45
5	Reusable, magnetic laser-induced graphene for efficient removal of organic pollutants from water. Carbon Letters, 2022, 32, 1047-1064.	5.9	9
6	Synthesis of bioâ€based polyesters with crystallization properties comparable to poly(butylene) Tj ETQq0 0 0 rgE	BT <u>¦O</u> verloo	ck] 0 Tf 50 5

7	Zincophilic Cu Sites Induce Dendriteâ€Free Zn Anodes for Robust Alkaline/Neutral Aqueous Batteries. Advanced Functional Materials, 2022, 32, .	14.9	57
8	Synthesis of a fire-retardant and high Tg biobased polyester from 2,5-furandicarboxylic acid. Polymer Journal, 2022, 54, 995-1008.	2.7	3
9	A high-voltage aqueous antimony-manganese hybrid battery based on all stripping/plating mechanism. Energy Storage Materials, 2022, 49, 529-536.	18.0	9
10	Methods for Rational Design of Advanced Znâ€Based Batteries. Small Methods, 2022, 6, .	8.6	24
11	Patterning of thermosetting resins via laser engraving towards efficient thermal management. Nano Energy, 2022, 100, 107477.	16.0	13
12	Comparison of Three Instruments for Activity Disability in Acute Ischemic Stroke Survivors. Canadian Journal of Neurological Sciences, 2021, 48, 94-104.	0.5	4
13	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 896-903.	13.8	108
14	Design of bio-based organic phase change materials containing a "safety valve― Green Chemistry, 2021, 23, 8643-8656.	9.0	6
14 15	Design of bio-based organic phase change materials containing a "safety valve― Green Chemistry, 2021, 23, 8643-8656. A quinone electrode with reversible phase conversion for long-life rechargeable aqueous aluminum–metal batteries. Chemical Communications, 2021, 57, 6931-6934.	9.0 4.1	6 31
	23, 8643-8656. A quinone electrode with reversible phase conversion for long-life rechargeable aqueous		
15	 23, 8643-8656. A quinone electrode with reversible phase conversion for long-life rechargeable aqueous aluminum–metal batteries. Chemical Communications, 2021, 57, 6931-6934. Structurally reconstituted calcium manganate nanoparticles as a high-performance cathode for 	4.1	31

#	Article	IF	CITATIONS
19	Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability. Progress in Polymer Science, 2021, 113, 101353.	24.7	189
20	Poly(1,4-butylene -co-1,4-cyclohexanedimethylene 2,5-furandicarboxylate) copolyester: Potential bio-based engineering plastic. European Polymer Journal, 2021, 147, 110317.	5.4	20
21	Mechanically robust and flame-retardant polylactide composites based on molecularly-engineered polyphosphoramides. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106317.	7.6	41
22	Epoxy resin with excellent ultraviolet resistance and mechanical properties derived from renewable camphoric acid. Polymers for Advanced Technologies, 2021, 32, 3701-3713.	3.2	5
23	Recent development on bioâ€based thermosetting resins. Journal of Polymer Science, 2021, 59, 1474-1490.	3.8	50
24	A deep insight into polybenzoxazole formation in the heterocycle-containing polybenzoxazine: An enlightening thought for smarter precursor design. Polymer, 2021, 226, 123789.	3.8	5
25	A COFâ€Like Nâ€Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for Highâ€Energy Aqueous Zinc Dualâ€Ion Batteries. Advanced Materials, 2021, 33, e2101857.	21.0	90
26	Hyperbranched flame retardant to simultaneously improve the fire-safety, toughness and glass transition temperature of epoxy resin. European Polymer Journal, 2021, 157, 110638.	5.4	28
27	Synthesis and properties of the bio-based isomeric benzoxazine resins: Revealing the effect of the neglected short alkyl substituents. European Polymer Journal, 2021, 157, 110671.	5.4	14
28	Pyrrolic-Dominated Nitrogen Redox Enhances Reaction Kinetics of Pitch-Derived Carbon Materials in Aqueous Zinc Ion Hybrid Supercapacitors. , 2021, 3, 1291-1299.		54
29	Bismuth nanoparticles@carbon composite as a stable and high capacity anode for high-voltage bismuth-manganese batteries. Energy Storage Materials, 2021, 41, 623-630.	18.0	27
30	Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon, 2021, 183, 600-611.	10.3	44
31	Enhancing Liâ€lon Affinity of Molybdenum Dioxide/Carbon Fabric to Achieve High Pseudocapacitance. Small, 2021, 17, e2104178.	10.0	3
32	Cobaltâ€Based Electrocatalysts as Air Cathodes in Rechargeable Zn–Air Batteries: Advances and Challenges. Small Structures, 2021, 2, 2100144.	12.0	40
33	Forest-like Laser-Induced Graphene Film with Ultrahigh Solar Energy Utilization Efficiency. ACS Nano, 2021, 15, 19490-19502.	14.6	90
34	Enhancing Znâ€lon Storage Capability of Hydrated Vanadium Pentoxide by the Strategic Introduction of La ³⁺ . ChemSusChem, 2020, 13, 1568-1574.	6.8	37
35	Making organic coatings greener: Renewable resource, solvent-free synthesis, UV curing and repairability. European Polymer Journal, 2020, 123, 109439.	5.4	44
36	Using Azo-Compounds to Endow Biobased Thermosetting Coatings with Potential Application for Reversible Information Storage. ACS Applied Polymer Materials, 2020, 2, 4551-4558.	4.4	4

#	Article	IF	CITATIONS
37	Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer. Polymer, 2020, 210, 123004.	3.8	44
38	Zeolitic Imidazolate Frameworks as Zn ²⁺ Modulation Layers to Enable Dendriteâ€Free Zn Anodes. Advanced Science, 2020, 7, 2002173.	11.2	199
39	2020 Roadmap on Zinc Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3696-3708.	3.3	26
40	Synthesis of Mechanically Robust and Self-Healing UV-Curable Materials from Renewable Feedstock. ACS Sustainable Chemistry and Engineering, 2020, 8, 16842-16852.	6.7	36
41	High molecular weight poly(butylene terephthalateâ€coâ€butylene 2,5â€furan dicarboxylate) copolyesters: From synthesis to thermomechanical and barrier properties. Journal of Applied Polymer Science, 2020, 137, 49365.	2.6	11
42	A high-energy-density aqueous zinc–manganese battery with a La–Ca co-doped ε-MnO ₂ cathode. Journal of Materials Chemistry A, 2020, 8, 11642-11648.	10.3	69
43	Investigation on the Effects of Bridging Groups in Aromatic Diphenol-Based Benzoxazines: Curing Reaction and H Bonds. Industrial & Engineering Chemistry Research, 2020, 59, 12085-12095.	3.7	7
44	Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zincâ€ion Batteries: Recent Progress and Future Perspectives. Advanced Sustainable Systems, 2020, 4, 2000082.	5.3	81
45	Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon, 2020, 163, 85-94.	10.3	66
46	Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin. Composites Part B: Engineering, 2020, 190, 107926.	12.0	119
47	Aromatic organic molecular crystal with enhanced ï€â€"Ĩ€ stacking interaction for ultrafast Zn-ion storage. Energy and Environmental Science, 2020, 13, 2515-2523.	30.8	166
48	Flexible Znâ€ion batteries based on manganese oxides: Progress and prospect. , 2020, 2, 387-407.		55
49	A New Sight into Bio-Based Polybenzoxazine: From Tunable Thermal and Mechanical Properties to Excellent Marine Antifouling Performance. ACS Omega, 2020, 5, 3763-3773.	3.5	32
50	Comparative Study on the Properties of Epoxy Derived from Aromatic and Heteroaromatic Compounds: The Role of Hydrogen Bonding. Industrial & Engineering Chemistry Research, 2020, 59, 1914-1924.	3.7	20
51	A sustainable strategy for remediation of oily sewage: Clean and safe. Separation and Purification Technology, 2020, 240, 116592.	7.9	26
52	Biobased Poly(ethylene 2,5-furancoate): No Longer an Alternative, but an Irreplaceable Polyester in the Polymer Industry. ACS Sustainable Chemistry and Engineering, 2020, 8, 8471-8485.	6.7	106
53	Biopolymers and Biocomposites. , 2020, , 231-275.		1
54	Dendriteâ€Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Znâ€Ion Batteries. Advanced Materials, 2019, 31, e1903675.	21.0	780

#	Article	IF	CITATIONS
55	New insight into the mechanism for the excellent gas properties of poly(ethylene) Tj ETQq1 1 0.784314 rgBT /O 642-650.	verlock 10 7 5.4	Tf 50 747 Td 76
56	Synthesis of bio-based fire-resistant epoxy without addition of flame retardant elements. Composites Part B: Engineering, 2019, 179, 107523.	12.0	64
57	Effects of Various 1,3-Propanediols on the Properties of Poly(propylene furandicarboxylate). ACS Sustainable Chemistry and Engineering, 2019, 7, 3282-3291.	6.7	36
58	Regulating the performance of polybenzoxazine via the regiochemistry of amide substituents. Polymer, 2019, 181, 121807.	3.8	7
59	Making Benzoxazine Greener and Stronger: Renewable Resource, Microwave Irradiation, Green Solvent, and Excellent Thermal Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 8715-8723.	6.7	86
60	Biobased Amorphous Polyesters with High <i>T</i> _g : Trade-Off between Rigid and Flexible Cyclic Diols. ACS Sustainable Chemistry and Engineering, 2019, 7, 6401-6411.	6.7	53
61	Biobased Nitrogen- and Oxygen-Codoped Carbon Materials for High-Performance Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 2763-2773.	6.7	95
62	Bioâ€Based Polybenzoxazine Modified Melamine Sponges for Selective Absorption of Organic Solvent in Water. Advanced Sustainable Systems, 2019, 3, 1800126.	5.3	24
63	Copolyesters developed from bioâ€based 2,5â€furandicarboxylic acid: Synthesis, sequence distribution, mechanical, and barrier properties of poly(propyleneâ€ <i>co</i> â€1,4â€cyclohexanedimethylene) Tj ETQq1 1 0.	.78 43 614 rgB	8T2/Overlock
64	2,5â€Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly(ethylene terephthalate) copolyester with enhanced performance. Journal of Applied Polymer Science, 2019, 136, 47186.	2.6	27
65	Synthesis of Biobased Benzoxazines Suitable for Vacuum-Assisted Resin Transfer Molding Process via Introduction of Soft Silicon Segment. Industrial & Engineering Chemistry Research, 2018, 57, 3091-3102.	3.7	56
66	Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1, 4-cyclohexanedimethanol: Influence of stereochemistry of 1,4-cyclohexylene units. Polymer, 2018, 137, 173-185.	3.8	63
67	Outlook on ecologically improved composites for aviation interior and secondary structures. CEAS Aeronautical Journal, 2018, 9, 533-543.	1.7	33
68	Fully bioâ€based polyesters derived from 2,5â€furandicarboxylic acid (2,5â€FDCA) and dodecanedioic acid (DDCA): From semicrystalline thermoplastic to amorphous elastomer. Journal of Applied Polymer Science, 2018, 135, 46076.	2.6	47
69	Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): Potential bio-based engineering plastic. European Polymer Journal, 2018, 109, 379-390.	5.4	38
70	High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources. ACS Sustainable Chemistry and Engineering, 2018, 6, 7589-7599.	6.7	154
71	How Does the Hydrogen Bonding Interaction Influence the Properties of Polybenzoxazine? An Experimental Study Combined with Computer Simulation. Macromolecules, 2018, 51, 4782-4799.	4.8	75
72	Manipulating the Properties of Poly(1,4 yclohexylenedimethylene Terephthalate) (PCT) Just by Tuning Steric Configuration of 1.4 yclohexanedimethanol (CHDM). Macromolecular Chemistry and Physics, 2018, 219, 1800172.	2.2	7

XIAOQING LIU

#	Article	IF	CITATIONS
73	Synthesis of Eugenol-Based Silicon-Containing Benzoxazines and Their Applications as Bio-Based Organic Coatings. Coatings, 2018, 8, 88.	2.6	44
74	Biobased Benzoxazine Derived from Daidzein and Furfurylamine: Microwaveâ€Assisted Synthesis and Thermal Properties Investigation. ChemSusChem, 2018, 11, 3175-3183.	6.8	84
75	The role of a biobased epoxy monomer in the preparation of diglycidyl ether of bisphenol A/MWCNT composites. Polymer Composites, 2017, 38, 1640-1645.	4.6	5
76	Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties. Macromolecules, 2017, 50, 1892-1901.	4.8	343
77	2,5-Furandicarboxylic Acid- and Itaconic Acid-Derived Fully Biobased Unsaturated Polyesters and Their Cross-Linked Networks. Industrial & Engineering Chemistry Research, 2017, 56, 2650-2657.	3.7	58
78	Synthesis of multifunctional monomers from rosin for the properties enhancement of soybean-oil based thermosets. Science China Technological Sciences, 2017, 60, 1332-1338.	4.0	12
79	Hexahydro- <i>s</i> -triazine: A Trial for Acid-Degradable Epoxy Resins with High Performance. ACS Sustainable Chemistry and Engineering, 2017, 5, 4683-4689.	6.7	57
80	UV-thermal dual cured anti-bacterial thiol-ene networks with superior performance from renewable resources. Polymer, 2017, 108, 215-222.	3.8	48
81	Bio-Based Epoxy Resins Derived From Eugenol With Low Dielectric Constant. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139, .	1.8	22
82	Itaconic Acid as a Green Alternative to Acrylic Acid for Producing a Soybean Oil-Based Thermoset: Synthesis and Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 1228-1236.	6.7	94
83	How Does the Hydrogen Bonding Interaction Influence the Properties of Furan-Based Epoxy Resins. Industrial & Engineering Chemistry Research, 2017, 56, 10929-10938.	3.7	36
84	Synthesis of bioâ€based poly(ethylene 2,5â€furandicarboxylate) copolyesters: Higher glass transition temperature, better transparency, and good barrier properties. Journal of Polymer Science Part A, 2017, 55, 3298-3307.	2.3	69
85	Synthesis of an Epoxy Monomer from Bio-Based 2,5-Furandimethanol and Its Toughening via Diels–Alder Reaction. Industrial & Engineering Chemistry Research, 2017, 56, 8508-8516.	3.7	46
86	Synthesis of high performance polybenzoxazine networks from bio-based furfurylamine: Furan vs benzene ring. Polymer, 2017, 122, 258-269.	3.8	104
87	Copolyesters Based on 2,5-Furandicarboxylic Acid (FDCA): Effect of 2,2,4,4-Tetramethyl-1,3-Cyclobutanediol Units on Their Properties. Polymers, 2017, 9, 305.	4.5	66
88	Increased Susceptibility to Ischemic Brain Injury in Neuroplastin 65-Deficient Mice Likely via Glutamate Excitotoxicity. Frontiers in Cellular Neuroscience, 2017, 11, 110.	3.7	12
89	Green Synthesis of a Bioâ€Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin. Macromolecular Chemistry and Physics, 2016, 217, 1439-1447.	2.2	43
90	Research progress on bioâ€based thermosetting resins. Polymer International, 2016, 65, 164-173.	3.1	173

#	Article	IF	Citations
91	Soybean oil-based UV-curable coatings strengthened by crosslink agent derived from itaconic acid together with 2-hydroxyethyl methacrylate phosphate. Progress in Organic Coatings, 2016, 97, 210-215.	3.9	67
92	Synthesis of an intrinsically flame retardant bio-based benzoxazine resin. Polymer, 2016, 97, 418-427.	3.8	62
93	Bio-based shape memory epoxy resin synthesized from rosin acid. Iranian Polymer Journal (English) Tj ETQq1 10.	784314 rş 2.4	gBT_/Overlock
94	Synthesis of epoxy curing agents containing different ring structures and properties investigation of the cured resins. Journal of Applied Polymer Science, 2016, 133, .	2.6	9
95	Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymer, 2016, 103, 1-8.	3.8	138
96	Initiating Highly Effective Hydrolysis of Regenerated Cellulose by Controlling Transition of Crystal Form with Sulfolane under Microwave Radiation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1507-1511.	6.7	21
97	Synthesis of eugenol-based multifunctional monomers via a thiol–ene reaction and preparation of UV curable resins together with soybean oil derivatives. RSC Advances, 2016, 6, 17857-17866.	3.6	44
98	Soft segment free thermoplastic polyester elastomers with high performance. Journal of Materials Chemistry A, 2015, 3, 13637-13641.	10.3	36
99	High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Progress in Organic Coatings, 2015, 87, 197-203.	3.9	82
100	Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 2015, 17, 2383-2392.	9.0	144
101	Synthesis and properties of a bio-based epoxy resin from 2,5-furandicarboxylic acid (FDCA). RSC Advances, 2015, 5, 15930-15939.	3.6	148
102	Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Progress in Organic Coatings, 2015, 78, 49-54.	3.9	124
103	Mesenchymal stem cells contribute to the chemoresistance of hepatocellular carcinoma cells in inflammatory environment by inducing autophagy. Cell and Bioscience, 2014, 4, 22.	4.8	29
104	Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Science China Chemistry, 2014, 57, 379-388.	8.2	139
105	Origin of highly recoverable shape memory polyurethanes (SMPUs) with non-planar ring structures: a single molecule force spectroscopy investigation. Journal of Materials Chemistry A, 2014, 2, 20010-20016.	10.3	36
106	Bio-based tetrafunctional crosslink agent from gallic acid and its enhanced soybean oil-based UV-cured coatings with high performance. RSC Advances, 2014, 4, 23036.	3.6	92
107	Synthesis and Properties of a Bioâ€Based Epoxy Resin with High Epoxy Value and Low Viscosity. ChemSusChem, 2014, 7, 555-562.	6.8	147
108	Non-growing season soil CO2 efflux and its changes in an alpine meadow ecosystem of the Qilian Mountains, Northwest China. Journal of Arid Land, 2013, 5, 488-499.	2.3	8

XIAOQING LIU

#	Article	IF	CITATIONS
109	Synthesis of a bio-based polyamidoamine-epichlorohydrin resin and its application for soy-based adhesives. International Journal of Adhesion and Adhesives, 2013, 44, 237-242.	2.9	76
110	Highly recoverable rosin-based shape memory polyurethanes. Journal of Materials Chemistry A, 2013, 1, 3263.	10.3	87
111	Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chemistry, 2013, 15, 245-254.	9.0	261
112	Preparation of a New Type of Polyamidoamine and Its Application for Soy Flourâ€Based Adhesives. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 265-272.	1.9	19
113	Synthesis and properties of full bio-based thermosetting resins from rosin acid and soybean oil: the role of rosin acid derivatives. Green Chemistry, 2013, 15, 1300.	9.0	139
114	How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. Journal of Materials Chemistry A, 2013, 1, 5081.	10.3	112
115	Synthesis, Characterization of a Rosin-based Epoxy Monomer and its Comparison with a Petroleum-based Counterpart. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 321-329.	2.2	36
116	The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. Journal of Applied Polymer Science, 2012, 125, 1108-1115.	2.6	130
117	Preparation and characterization of regenerated cellulose blend films containing high amount of poly(vinyl alcohol) (PVA) in ionic liquid. Macromolecular Research, 2012, 20, 703-708.	2.4	18
118	Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydrate Polymers, 2012, 88, 26-30.	10.2	147
119	Preparation and characterization of regenerated cellulose/poly (vinylidene fluoride) (PVDF) blend films. Carbohydrate Polymers, 2012, 89, 67-71.	10.2	30
120	The study of regenerated cellulose films toughened with thermoplastic polyurethane elastomers. Cellulose, 2012, 19, 121-126.	4.9	8
121	Neuroprotective Effects of Bone Marrow Stem Cells Overexpressing Clial Cell Line-Derived Neurotrophic Factor on Rats With Intracerebral Hemorrhage and Neurons Exposed to Hypoxia/Reoxygenation. Neurosurgery, 2011, 68, 691-704.	1.1	46
122	Study of dextrin-derived curing agent for waterborne epoxy adhesive. Carbohydrate Polymers, 2011, 83, 1180-1184.	10.2	27
123	Rosin-derived imide-diacids as epoxy curing agents for enhanced performance. Bioresource Technology, 2010, 101, 2520-2524.	9.6	130
124	Highâ€performance biobased epoxy derived from rosin. Polymer International, 2010, 59, 607-609.	3.1	31
125	Synthesis of rosinâ€based flexible anhydrideâ€ŧype curing agents and properties of the cured epoxy. Polymer International, 2009, 58, 1435-1441.	3.1	91
126	Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chemistry, 2009, 11, 1018.	9.0	221

#	Article	IF	CITATIONS
127	Synthesis of biobased epoxy and curing agents using rosin and the study of cure reactions. Green Chemistry, 2008, 10, 1190.	9.0	107
128	Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolyester modified with rosin maleopimaric acid anhydride. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 900-913.	2.1	37
129	Synthesis, characterization and properties of poly(butylene succinate) modified with rosin maleopimaric acid anhydride. Polymer International, 2006, 55, 545-551.	3.1	30
130	Non-isothermal crystallization kinetics and melting behaviors of poly(butylene succinate) and its copolyester modified with trimellitic imide units. Journal of Applied Polymer Science, 2006, 102, 2493-2499.	2.6	13
131	Synthesis, Characterization and Properties of Poly(butylene succinate) Reinforced by Trimellitic Imide Units. Macromolecular Chemistry and Physics, 2006, 207, 694-700.	2.2	11
132	Crystallization behavior and morphology of poly(butylene succinate) modified with rosin maleopimaric acid anhydride. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2694-2704.	2.1	12
133	Research Progress on Formaldehydeâ€Free Wood Adhesive Derived from Soy Flour. , 0, , .		10